首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
安全科学   3篇
环保管理   1篇
综合类   1篇
基础理论   5篇
污染及防治   4篇
评价与监测   1篇
  2023年   1篇
  2022年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Seaweeds have been used as a source of traditional medicine worldwide for the treatment of various ailments, mainly due to their ability to quench the free radicals. The present study aims at evaluating the protective effect of methanolic extract of Gelidiella acerosa, an edible red seaweed against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity in peripheral blood mononuclear cells (PBMC). For evaluating the protective effect of G. acerosa, PBMC were divided into four groups: vehicle control, TCDD (10 nM), TCDD?+?G. acerosa (300 μg/ml), and G. acerosa alone treated. Scavenging of intracellular reactive oxygen species (ROS) induced by TCDD was assessed by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method. Alterations at macromolecular level were quantified through lipid peroxidation (LPO) level, protein carbonyl content (PCC) level, and comet assay. The cellular morphology upon TCDD toxicity and G. acerosa treatment was obtained by light microscopy and histopathological studies. The chemical composition present in the methanolic extract of G. acerosa was determined by gas chromatography-mass spectrometry (GC-MS) analysis. The results reveal that 10 nM TCDD caused significant (P?<?0.05) reduction in cell viability (94.10?±?0.99), and treatment with 300 μg/ml extract increased the cell viability (99.24?±?0.69). TCDD treatment resulted in a significant increase in the production of ROS, LPO (114?±?0.09), and PCC (15.13?±?1.53) compared to the control, whereas co-treatment with G. acerosa significantly (P?<?0.05) mitigated the effects. Further, G. acerosa significantly (P?<?0.05) prevented TCDD-induced genotoxicity and cell damage. GC-MS analysis showed the presence of n-hexadecanoic acid (retention time (RT) 13.15), cholesterol (RT 28.80), α-d-glucopyranose, 4-O-α-d-galactopyranosyl (RT 20.01), and azulene (RT 4.20). The findings suggest that G. acerosa has a strong protective ability against TCDD-induced cytotoxicity, oxidative stress, and DNA damage.  相似文献   
2.
The protective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against TCDD induced toxicity was investigated in human peripheral blood mononuclear cells (PBMC). PBMC (1 × 106 cells mL−1) were divided into four groups and were incubated in a CO2 incubator (5% CO2) for 12 h with vehicle, TCDD (10 nM), TCDD + HT (10 nM + 100 μM) and HT alone (100 μM) respectively. To clarify the role of HT against TCDD induced cytotoxicity, oxidative stress and the levels of antioxidant enzymes were assessed. Incubation of PBMC with TCDD significantly decreased cell viability, catalase (CAT) and glutathione peroxidase (GPx) and increased the levels of superoxide dismutase (SOD), glutathione reductase (GR) and oxidative stress markers such as lipid peroxidation products (LPO), protein carbonyl content (PCC) and reactive oxygen species (ROS). Whereas, HT had an effective antioxidant property as observed by the increased cell viability, normalization of antioxidant enzymes and decreased levels of LPO, PCC and ROS in PBMC co-treated with HT and TCDD. Apoptosis detection and comet assay results shows that HT, by acting as an antioxidant, prevents the damage to DNA induced by TCDD. In addition light microscopic and histopathological observations revealed that the cells are apoptotic and degenerated during TCDD treatment, whereas cells showed intact morphology during co-treatment with HT. On the whole, the results reveal that HT exerts a promising antioxidant potential in protecting the PBMC against TCDD induced oxidative stress, which might be due to the presence of catechol moiety in its structure.  相似文献   
3.
Introduction: A simplified and computationally efficient human body finite element model is presented. The model complements the Global Human Body Models Consortium (GHBMC) detailed 50th percentile occupant (M50-O) by providing kinematic and kinetic data with a significantly reduced run time using the same body habitus.

Methods: The simplified occupant model (M50-OS) was developed using the same source geometry as the M50-O. Though some meshed components were preserved, the total element count was reduced by remeshing, homogenizing, or in some cases omitting structures that are explicitly contained in the M50-O. Bones are included as rigid bodies, with the exception of the ribs, which are deformable but were remeshed to a coarser element density than the M50-O. Material models for all deformable components were drawn from the biomechanics literature. Kinematic joints were implemented at major articulations (shoulder, elbow, wrist, hip, knee, and ankle) with moment vs. angle relationships from the literature included for the knee and ankle. The brain of the detailed model was inserted within the skull of the simplified model, and kinematics and strain patterns are compared.

Results: The M50-OS model has 11 contacts and 354,000 elements; in contrast, the M50-O model has 447 contacts and 2.2 million elements. The model can be repositioned without requiring simulation. Thirteen validation and robustness simulations were completed. This included denuded rib compression at 7 discrete sites, 5 rigid body impacts, and one sled simulation. Denuded tests showed a good match to the experimental data of force vs. deflection slopes. The frontal rigid chest impact simulation produced a peak force and deflection within the corridor of 4.63 kN and 31.2%, respectively. Similar results vs. experimental data (peak forces of 5.19 and 8.71 kN) were found for an abdominal bar impact and lateral sled test, respectively. A lateral plate impact at 12 m/s exhibited a peak of roughly 20 kN (due to stiff foam used around the shoulder) but a more biofidelic response immediately afterward, plateauing at 9 kN at 12 ms. Results from a frontal sled simulation showed that reaction forces and kinematic trends matched experimental results well. The robustness test demonstrated that peak femur loads were nearly identical to the M50-O model. Use of the detailed model brain within the simplified model demonstrated a paradigm for using the M50-OS to leverage aspects of the M50-O. Strain patterns for the 2 models showed consistent patterns but greater strains in the detailed model, with deviations thought to be the result of slightly different kinematics between models. The M50-OS with the deformable skull and brain exhibited a run time 4.75 faster than the M50-O on the same hardware.

Conclusions: The simplified GHBMC model is intended to complement rather than replace the detailed M50-O model. It exhibited, on average, a 35-fold reduction in run time for a set of rigid impacts. The model can be used in a modular fashion with the M50-O and more broadly can be used as a platform for parametric studies or studies focused on specific body regions.  相似文献   
4.
Objective: A 3-phase real-world motor vehicle crash (MVC) reconstruction method was developed to analyze injury variability as a function of precrash occupant position for 2 full-frontal Crash Injury Research and Engineering Network (CIREN) cases.

Method: Phase I: A finite element (FE) simplified vehicle model (SVM) was developed and tuned to mimic the frontal crash characteristics of the CIREN case vehicle (Camry or Cobalt) using frontal New Car Assessment Program (NCAP) crash test data. Phase II: The Toyota HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations per case within the SVM. Five occupant positioning variables were varied using a Latin hypercube design of experiments: seat track position, seat back angle, D-ring height, steering column angle, and steering column telescoping position. An additional baseline simulation was performed that aimed to match the precrash occupant position documented in CIREN for each case. Phase III: FE simulations were then performed using kinematic boundary conditions from each vehicle's event data recorder (EDR). HIC15, combined thoracic index (CTI), femur forces, and strain-based injury metrics in the lung and lumbar vertebrae were evaluated to predict injury.

Results: Tuning the SVM to specific vehicle models resulted in close matches between simulated and test injury metric data, allowing the tuned SVM to be used in each case reconstruction with EDR-derived boundary conditions. Simulations with the most rearward seats and reclined seat backs had the greatest HIC15, head injury risk, CTI, and chest injury risk. Calculated injury risks for the head, chest, and femur closely correlated to the CIREN occupant injury patterns. CTI in the Camry case yielded a 54% probability of Abbreviated Injury Scale (AIS) 2+ chest injury in the baseline case simulation and ranged from 34 to 88% (mean = 61%) risk in the least and most dangerous occupant positions. The greater than 50% probability was consistent with the case occupant's AIS 2 hemomediastinum. Stress-based metrics were used to predict injury to the lower leg of the Camry case occupant. The regional-level injury metrics evaluated for the Cobalt case occupant indicated a low risk of injury; however, strain-based injury metrics better predicted pulmonary contusion. Approximately 49% of the Cobalt occupant's left lung was contused, though the baseline simulation predicted 40.5% of the lung to be injured.

Conclusions: A method to compute injury metrics and risks as functions of precrash occupant position was developed and applied to 2 CIREN MVC FE reconstructions. The reconstruction process allows for quantification of the sensitivity and uncertainty of the injury risk predictions based on occupant position to further understand important factors that lead to more severe MVC injuries.  相似文献   
5.
Environmental Science and Pollution Research - Exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy has been associated with many adverse child health. However, the evidence on such...  相似文献   
6.
Deterministic, size-structured models are widely used to describe consumer-resource interactions. Such models typically ignore potentially large random variability in juvenile development rates. We present simple representations of this variability and show five approaches to calculating the model parameters for Daphnia pulex interacting with its algal food. Using our parameterized models of growth variability, we investigate the robustness of a recently proposed stabilizing mechanism for Daphnia populations. Growth rate variability increases the range of enrichments over which small-amplitude cycles or quasi-cycles occur, thus increasing the plausibility that the underlying mechanism contributes to the prevalence of small-amplitude cycles in the field and in experiments. More generally, our approach allows us to relate commonly available information on variance of development times to population stability.  相似文献   
7.
Many mathematical programs have been developed over the past 50 years to aid agricultural experts and other farming decision-makers. The application of these mathematical programs has seen limited success because their development has focused on mathematical theory as opposed to the requirements needed for application. This paper describes the development of two mathematical programs that were designed to integrate with a visualization simulation that aids a nontraditional group of agricultural decision-makers: illiterate Sri Lankan subsistence farmers. The simulation was designed to help these illiterate farmers make business decisions about their crop selection choices which, in turn, will help them develop their business plans required for obtaining bank micro-loans. This paper’s focus is on the use of linear programming as a potential tool to demonstrate the benefits of crop diversification and rotation to the farmer based on various available crop types. It also highlights the issues using such an approach.  相似文献   
8.
Examination of the different methods employed to detect dehydrogenases activity of activated sludge by reduction of triphenyl tetrazolium chloride (TTC) indicated the non‐uniformity of the procedures. A modified method is, therefore, developed which consists of incubation of a dilute sonicated sample of mixed liquor suspended solids (MLSS) of activated sludge with TTC in the presence of sodium sulfite, phosphate buffer and cyanide. Triphenyl formazan (TF) formed is first dissolved in acetic acid and later extracted by toluene. Optical density (OD) of the color is measured at 485 nm. Dehydrogenases activity is calculated from the OD and expressed as specific activity per unit weight of protein. Modified method gave less relative dispersion compared to the values obtained on the same but unsonicated samples of MLSS.  相似文献   
9.
A study of dehydrogenases activity of activated sludge, return activated sludge, and waste activated sludge from three sewage treatment plants was made. Dehydrogenases activity and protein content of the mixed liquor varied along the aeration basin. Chromium chloride and zinc sulfate were found to be inhibitory to dehydrogenases activity. Return activated sludge and waste activated sludge, in spite of higher content of volatile suspended solids, contained lower dehydrogenases activity. Return activated sludge when kept without aeration and addition of sewage, showed higher dehydrogenases activity; and on aeration, but without addition of sewage, it showed progressively lower dehydrogenases activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号