首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   1篇
基础理论   3篇
社会与环境   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.  相似文献   
2.
Balata D  Piazzi L  Benedetti-Cecchi L 《Ecology》2007,88(10):2455-2461
How changes in environmental complexity and heterogeneity affect beta diversity is poorly known. We investigated patterns of beta diversity in subtidal assemblages of algae and invertebrates in the northwest Mediterranean in relation to inclination of the substratum and sedimentation. Vertical and horizontal substrata supported distinct assemblages under low, but not under heavy, ambient loads of sediment. To test the hypothesis that sediment reduced the dissimilarity between assemblages, sedimentation was increased experimentally in plots established on vertical and horizontal surfaces at sites experiencing low ambient levels of sedimentation. Patterns were compared to those occurring at unmanipulated sites and at sites exposed to heavy loads of sediment about 2 km apart. After one year, assemblages on vertical substrata were indistinguishable from those occurring on flat surfaces at manipulated sites and both converged toward those occurring at sites exposed to heavy loads of sediment. Control sites still supported distinct assemblages on vertical and horizontal substrata by the end of the experiment. Similar effects of sediment were observed on recovering assemblages in experimental clearings. These results show that sediment increased similarity in assemblages overriding the influence of habitat complexity on beta diversity at small and large spatial scales.  相似文献   
3.
In coastal habitats, wave exposure influences several aspects of the life history of marine organisms. Here, we assess how hydrodynamic conditions can generate variation in density, size structure and microhabitat usage of Paracentrotus lividus and whether these effects are consistent between regions that are markedly different for oceanic climate, such as the coasts of SW Portugal and NW Italy. The abundance of P. lividus was ~4 times higher in SW Portugal than in NW Italy, but within each region, there was no effect of wave exposure. In SW Portugal, higher urchin abundances were found at shallower depths, while no effect of depth on urchin abundance emerged in NW Italy. Most of the variation in urchin abundance occurred at small spatial scales (metres), and our results suggest that habitat complexity, that is, the presence of cracks and crevices, is an important determinant of patterns of distribution of this species. The population in NW Italy was characterized by a unimodal size distribution, with a higher proportion of medium-sized individuals. In contrast, in SW Portugal, smaller individuals represented a large proportion of the populations. Size structure varied between exposed and sheltered habitats in SW Portugal, suggesting that the proportion of individuals from different size cohorts may vary along wave-exposure gradients as a result of direct or indirect effects of hydrodynamic forces. In SW Portugal, most urchins occurred in burrows, while in NW Italy, urchins were mainly observed in crevices. These results suggest that creating/occupying burrows might be an adaptive behaviour that allows sea urchins to better withstand stressful hydrodynamic conditions and, therefore, are more common on exposed Atlantic coasts. Overall, our study suggests that the effects of hydrodynamic forces on sea urchin populations are context dependent and vary according to background oceanic climate.  相似文献   
4.
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号