首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
环保管理   2篇
基础理论   15篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2001年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Abstract: The difficulties of saving millions of species from extinction often cause conservationists to focus on a higher level of biological organization, the community. They do so for two reasons: (1) communities are considered important biological entities in their own right; and (2) conserving representative samples of communities is seen as an efficient way to maintain high levels of species diversity. This approach will work if the chosen communities contain almost all species. Because it potentially saves most but not all species, community conservation is a "coarse-filter" approach to the maintenance of biological diversity, and contrasts with the "fine-filter" approach of saving individual species. Paleoecological information on the distribution of plant taxa in North America, however, indicates that most modern plant communities are less than 8,000 years old and therefore are not highly organized units reflecting long-term co-evolution among species. Rather, they are only transitory assemblages or co-occurrences among plant taxa that have changed in abundance, distribution, and association in response to the large climate changes of the past 20,000 years. During periods when climate changes are large, communities are too ephemeral to be considered important biological entities in their own right. Large climatic changes are also likely to occur during the next century because of increased concentrations of CO2, and we therefore propose that the coarse-filter approach to selecting nature reserves should be more strongly influenced by the distribution of physical environments than by the distribution of modern communities. Ideally, nature reserves should also encompass a broad enough range of environments to allow organisms to adjust their local distribution in response to long-term environmental change and should be connected by regional corridors that would allow species to change their geographic distributions.  相似文献   
2.
3.
Abstract:  Relatively few studies have examined the ecological effects of group-selection timber harvesting, and nearly all have been short-term and have lacked experimental manipulations that allow pre- and posttreatment comparisons. We have been documenting the effects of a group-selection timber harvest on bird abundance in a Maine forest for 24 years (preharvest, 1983–1987; postharvest, 1988–2006). Here we characterized the trends in bird abundance over the first 20 years of the study in the managed and control halves of the 40-ha study area. Species responses to the group-selection harvest were idiosyncratic, but in general the mature-forest bird community was retained and species dependent on early successional habitat temporarily (≤8 years) benefited. The Eastern Wood-Pewee ( Contopus virens ) , Winter Wren ( Troglodytes troglodytes ) , Pine Warbler ( Dendroica pinus ) , and White-throated Sparrow ( Zonotrichia albicollis ) increased in abundance in the managed half of the study area following timber harvest, whereas the Veery ( Catharus fuscescens ) decreased. The Black-and-White Warbler ( Mniotilta varia ) , Nashville Warbler ( Vermivora ruficapilla ) , and Common Yellowthroat ( Geothlypis trichas ) responded positively to harvesting, as indicated by decreases in abundance in the control area and more protracted declines or stable abundances in the managed area. This study constitutes the longest experimental investigation to date of the effects of a group-selection harvest on birds and thus provides important information on the strength, direction, and duration of temporal changes in bird populations following forest management.  相似文献   
4.
Abstract: The search for generalities in ecology has often been thwarted by contingency and ecological complexity that limit the development of predictive rules. We present a set of concepts that we believe succinctly expresses some of the fundamental ideas in conservation biology. (1) Successful conservation management requires explicit goals and objectives. (2) The overall goal of biodiversity management will usually be to maintain or restore biodiversity, not to maximize species richness. (3) A holistic approach is needed to solve conservation problems. (4) Diverse approaches to management can provide diverse environmental conditions and mitigate risk. (5) Using nature's template is important for guiding conservation management, but it is not a panacea. (6) Focusing on causes not symptoms enhances efficacy and efficiency of conservation actions. (7) Every species and ecosystem is unique, to some degree. (8) Threshold responses are important but not ubiquitous. (9) Multiple stressors often exert critical effects on species and ecosystems. (10) Human values are variable and dynamic and significantly shape conservation efforts. We believe most conservation biologists will broadly agree these concepts are important. That said, an important part of the maturation of conservation biology as a discipline is constructive debate about additional or alternative concepts to those we have proposed here. Therefore, we have established a web‐based, online process for further discussion of the concepts outlined in this paper and developing additional ones.  相似文献   
5.
Abstract: Information required to evaluate the extent to which species are at risk of extinction is usually limited and characterized as highly uncertain. In this context, we define information availability as the presence or absence of information used to determine the value of an ecological variable. We examined which of three hypothetical approaches best matched how levels of risk are assigned to species: (1) precautionary approach in which analysts designate levels of risk regardless of the amount of information available, (2) worst‐case approach in which analysts assign the maximum level of risk possible from the criteria, and (3) insurance approach in which analysts assign poorly known species to a high‐risk category when little information is available. We used the quantitative assessment criteria of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) as a case study. We created a binary (0/1) matrix of all 2.4192 × 107 logical combinations of available information for the 14 ecological variables included in the quantitative criteria. We processed each combination of information availability represented in the matrix with a computer algorithm designed to emulate COSEWIC decision‐making rules. Low information availability was associated with a relatively high frequency of not being able to assign a candidate taxon to a risk category, which does not follow the precautionary principle. Information availability and the level of risk assigned to species were directly related, which is associated with the worst‐case approach, and counter to the insurance approach. Our results suggest that information availability can have a major effect on the level of risk assigned to a species. We recommend a conscious determination of whether such effects are desired, and we recommend the development of methods to explicitly characterize and incorporate information availability and other sources of uncertainty in decision‐making processes.  相似文献   
6.
A divergence of values has become apparent in recent debates between conservationists who focus on ecosystem services that can improve human well‐being and those who focus on avoiding the extinction of species. These divergent points of view fall along a continuum from anthropocentric to biocentric values, but most conservationists are relatively closer to each other than to the ends of the spectrum. We have some concerns with both positions but emphasize that conservation for both people and all other species will be most effective if conservationists focus on articulating the values they all share, being respectful of divergent values, and collaborating on common interests. The conservation arena is large enough to accommodate many people and organizations whose diverse values lead them to different niches that can, with good will and foresight, be far more complementary than competitive. Los Nichos Complementarios de los Conservacionistas Antropocéntricos y Biocéntricos  相似文献   
7.
Effects of Selective Logging on Bat Communities in the Southeastern Amazon   总被引:2,自引:0,他引:2  
Abstract:  Although extensive areas of tropical forest are selectively logged each year, the responses of bat communities to this form of disturbance have rarely been examined. Our objectives were to (1) compare bat abundance, species composition, and feeding guild structure between unlogged and low-intensity selectively logged (1–4 logged stems/ha) sampling grids in the southeastern Amazon and (2) examine correlations between logging-induced changes in bat communities and forest structure. We captured bats in understory and canopy mist nets set in five 1-ha study grids in both logged and unlogged forest. We captured 996 individuals, representing 5 families, 32 genera, and 49 species. Abundances of nectarivorous and frugivorous taxa (Glossophaginae, Lonchophyllinae, Stenodermatinae, and Carolliinae) were higher at logged sites, where canopy openness and understory foliage density were greatest. In contrast, insectivorous and omnivorous species (Emballonuridae, Mormoopidae, Phyllostominae, and Vespertilionidae) were more abundant in unlogged sites, where canopy foliage density and variability in the understory stratum were greatest. Multivariate analyses indicated that understory bat species composition differed strongly between logged and unlogged sites but provided little evidence of logging effects for the canopy fauna. Different responses among feeding guilds and taxonomic groups appeared to be related to foraging and echolocation strategies and to changes in canopy cover and understory foliage densities. Our results suggest that even low-intensity logging modifies habitat structure, leading to changes in bat species composition.  相似文献   
8.
Abstract:  Unsustainable hunting of wildlife for food is often a more immediate and significant threat to the conservation of biological diversity in tropical forests than deforestation. Why people eat wildlife is debated. Some may eat bushmeat because they can afford it; others may eat it because it is familiar, traditional, confers prestige, tastes good, or adds variety. We completed a survey of 1208 rural and urban households in Gabon, Africa, in 2002–2003 to estimate the effect of wealth and prices on the consumption of wildlife and other sources of animal protein. Consumption of bushmeat, fish, chicken, and livestock increased with increasing household wealth, and as the price of these commodities rose, consumption declined. Although the prices of substitutes for bushmeat did not significantly, in statistical terms, influence bushmeat consumption, as the price of wildlife increased and its consumption fell, the consumption of fish rose, indicating that fish and bushmeat were dietary substitutes. Our results suggest that policy makers can use economic levers such as taxation or supply reduction through better law enforcement to change demand for wildlife. These measures will help to regulate unsustainable exploitation and reduce the risk of irreversible loss of large-bodied and slow-reproducing wildlife species. If policy makers focus solely on reducing the unsustainable consumption of wildlife, they may see adverse impacts on the exploitation of fish. Furthermore, policy makers must ensure that raising household wealth through development assistance does not result in undesirable impacts on the conservation status of wildlife and fish.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号