首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
综合类   1篇
基础理论   1篇
  2011年   2篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Upflow reactors for riparian zone denitrification   总被引:1,自引:0,他引:1  
We used permeable reactive subsurface barriers consisting of a C source (wood particles), with very high hydraulic conductivities ( approximately 0.1-1 cm s(-1)), to provide high rates of riparian zone NO3-N removal at two field sites in an agricultural area of southwestern Ontario. At one site, a 0.73-m3 reactor containing fine wood particles was monitored for a 20-mo period and achieved a 33% reduction in mean influent NO3-N concentration of 11.5 mg L(-1) and a mean removal rate of 4.5 mg L(-1) d(-1) (0.7 g m(-2) d(-1)). At the second site, four smaller reactors (0.21 m3 each), two containing fine wood particles and two containing coarse wood particles, were monitored for a 4-mo period and were successful in attenuating mean influent NO3-N concentrations of 23.7 to 35.1 mg L(-1) by 41 to 63%. Mean reaction rates for the two coarse-particle reactors (3.2 and 7.8 mg L(-1) d(-1), or 1.5 and 3.4 g m(-2) d(-1)) were not significantly different (p > 0.2) than the rates observed in the two fine-particle reactors (5.0 and 9.9 mg L(-1) d(-1), or 1.8-3.5 g m(-2) d(-1)). A two-dimensional ground water flow model is used to illustrate how permeable reactive barriers such as these can be used to redirect ground water flow within riparian zones, potentially augmenting NO3- removal in this environment.  相似文献   
2.
An evaluation of the interactions between vegetation, overland and soil erosion can provide valuable insight for the conservation of soil and water. An experiment was conducted to study water infiltration, runoff generation process, rate of sediment erosion, and hydrodynamic characteristics of overland flow from a sloping hillside with different draw-off discharges from alfalfa and control plots with 20° slope. The effect of alfalfa on runoff and sediment transport reduction was quantitatively analyzed. Alfalfa was discussed for its ability to reduce the overland flow scouring force or change the runoff movement. Compared to the bare-soil plots, alfalfa plots generated a 1.77 times increase in infiltration rate. Furthermore, the down-slope water infiltration rate for the bare soil plots was higher than in the up-slope, while the opposite was found in the alfalfa plots. In addition, alfalfa had a significant effect on runoff and sediment yield. In comparison to the control, the runoff coefficient and sediment transportation rate decreased by 28.3% and 78.4% in the grass slope, respectively. The runoff generated from the alfalfa and bare-soil plots had similar trends with an initial increase and subsequent leveling to a steady-state rate. The transport of sediment reduced with time as a consequence of the depletion of loose surface materials. The maximum sediment concentration was recorded within the first few minutes of each event. The alfalfa plots had subcritical flow while the bare-soil plots had supercritical flow, which indicate that the capability of the alfalfa slope for resisting soil erosion and sediment movement was greater than for bare soil plots. Moreover, the flow resistance coefficient and roughness coefficient for the alfalfa plots were both higher than for the bare-soil plots, which indicate that overland flow in alfalfa plots had retarded and was blocked, and the flow energy along the runoff path had gradually dissipated. Finally, the ability to erode and transport sediment had decreased.  相似文献   
3.
An evaluation of the interactions between vegetation, overland and soil erosion can provide valuable insight for the conservation of soil and water. An experiment was conducted to study water infiltration, runoff generation process, rate of sediment erosion, and hydrodynamic characteristics of overland flow from a sloping hillside with different draw-off discharges from alfalfa and control plots with 20° slope. The effect of alfalfa on runoff and sediment transport reduction was quantitatively analyzed. Alfalfa was discussed for its ability to reduce the overland flow scouring force or change the runoff movement. Compared to the bare-soil plots, alfalfa plots generated a 1.77 times increase in infiltration rate. Furthermore, the down-slope water infiltration rate for the bare soil plots was higher than in the up-slope, while the opposite was found in the alfalfa plots. In addition, alfalfa had a significant effect on runoff and sediment yield. In comparison to the control, the runoff coefficient and sediment transportation rate decreased by 28.3% and 78.4% in the grass slope, respectively. The runoff generated from the alfalfa and bare-soil plots had similar trends with an initial increase and subsequent leveling to a steady-state rate. The transport of sediment reduced with time as a consequence of the depletion of loose surface materials. The maximum sediment concentration was recorded within the first few minutes of each event. The alfalfa plots had subcritical flow while the baresoil plots had supercritical flow, which indicate that the capability of the alfalfa slope for resisting soil erosion and sediment movement was greater than for bare soil plots. Moreover, the flow resistance coefficient and roughness coefficient for the alfalfa plots were both higher than for the bare-soil plots, which indicate that overland flow in alfalfa plots had retarded and was blocked, and the flow energy along the runoff path had gradually dissipated. Finally, the ability to erode and transport sediment had decreased.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号