首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
This work explores the heavy metal retention capacity of materials developed from minerals that are abundant in nature, with low cost and minimum environmental impact. To accomplish this objective we have: (a) characterized commercial samples of calcite (CA) and hydroxyapatite (HAP)--including their surface properties (BET area, electrophoretic mobility, SEM, and X-ray energy dispersive spectroscopy); and, (b) qualified and quantified the interaction of Cd, Zn and Co with calcite (CaCO3) and hydroxyapatite [Ca5(PO4)3OH] through batch experiments, in a range of metal concentrations (4Zn>Co and Cd>Zn approximately Co, respectively. Retention increased with pCa and pH and could be modeled by: (a) a non-ideal ion exchange mechanism (Me/Ca) for the adsorption of Cd, Zn and Co onto CA; and, (b) a mechanism of non-ideal ion exchange and specific adsorption (Me/Ca and identical with PO4O-Me) in the case of HAP. The pH dependence is indirect in CA and is related to its solubility changes (pCa increases with pH, and so does sorption of Cd, Zn and Co). Both materials, HAP and CA, can be used for heavy metal retention. The former has better performance for water treatment due to its greater efficiency for the retention of Cd, Zn and Co (over two orders of magnitude per gram of material) and its lower solubility in a wide range of pH (6相似文献   
2.
This study qualifies and quantifies the immobilization of Cd, Zn and Co, (used as models of bivalent metal ions due to their relevant toxicity) in filters of synthetic hydroxyapatite (HAP) [Ca5(PO4)3OH]. They were flushed with solutions containing Cd (1 x 10(-5)M), Zn and Co (1 x 10(-4)M) at constant pH (8.6) and ionic strength (0.01 M). The concentration of these metal ions in the outlet was measured by ICP-OEM spectroscopy. The software PHREEQC (version 2.4.2) was used to model sorption process and the potential effect of salinity (KCl), pH, alkalinity (NaHCO3) and hardness (CaCl2) over the efficiency of the treatment. Results showed an excellent retention capacity of HAP for Cd, Zn and Co. Sorption data were successfully described considering a mix model of surface complexation onto phosphate surface groups, ionic exchange in surface calcium sites and the precipitation of ZnO. Co exchange and surface complexation constants (Kex and Kc) were taken from previous experiments, while KexCd=0.32 and KcCd=0.63 were estimated from our modeling results. Predictive values of metal ion sorption show that: (a) an increase in hardness does not play a significant role in the retention capacity of these metals on HAP; (b) an increase in alkalinity promotes the precipitation of MeCO3 which could alter the hydrodynamic of the column; (c) a decrease in pH and an increase in salinity inhibit ZnO precipitation enhancing Zn and Cd adsorption and decreasing Co retention on HAP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号