首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   2篇
  2009年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA) problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max–min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga–Bhadra river system in India.  相似文献   
2.
An inexact optimization approach for river water-quality management   总被引:2,自引:0,他引:2  
A previously developed fuzzy waste load allocation model (FWLAM) for a river system is extended to address uncertainty involved in fixing the membership functions for the fuzzy goals of the pollution control agency (PCA) and the dischargers using the concept of grey systems. The model provides flexibility for the PCA and the dischargers to specify their goals independently, as the parameters for membership functions are considered as interval grey numbers instead of deterministic real numbers. An inexact or a grey fuzzy optimization model is developed in a multiobjective framework, to maximize the width of the interval valued fractional removal levels for providing latitude in decision-making and to minimize the width of the goal fulfillment level for reducing the system uncertainty. The concept of an acceptability index for order relation between two partially or fully overlapping intervals is used to get a deterministic equivalent of the grey fuzzy optimization model developed. The improvement of the optimal solutions over a previously developed grey fuzzy waste load allocation model (GFWLAM) is shown through an application to a hypothetical river system. The fuzzy multiobjective optimization and fuzzy goal programming techniques are used to solve the deterministic equivalent of the GFWLAM.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号