首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   1篇
  国内免费   8篇
安全科学   4篇
废物处理   12篇
环保管理   15篇
综合类   26篇
基础理论   24篇
污染及防治   52篇
评价与监测   16篇
社会与环境   14篇
  2023年   6篇
  2022年   16篇
  2021年   10篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   14篇
  2012年   8篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有163条查询结果,搜索用时 343 毫秒
1.
Purpose. The current research was carried out to determine grip strength (GS) with change in posture and upper-limb muscle activity of manual workers and investigate the impacts of these changes. Methods. For the current research, 120 male and 80 female participants were selected and GS was assessed using a digital hand grip dynamometer in various conditions. Results. The outcomes showed that male participants had higher GS as compared to female participants. Maximum GS was found in a standing posture with the fixed forward shoulder at 45°, elbow at 90° and a neutral position of the wrist and forearm for all participants. Conclusions. Higher values of GS were attained in standing postures which may result in attainment of higher performance levels by the workers. The outcomes justify the importance of correct postures during manual work in industries employing traditional methods.  相似文献   
2.
3.
Environmental Science and Pollution Research - Compressed natural gas is an alternative green fuel for automobile industry. Recently, the Indian government is targeting to replace all the...  相似文献   
4.
Journal of Material Cycles and Waste Management - The recent emergence of the COVID-19 pandemic has contributed to the drastic production and use of healthcare and personal protective equipment,...  相似文献   
5.
Demand for sustainable renewable energy is on an increase worldwide, whereas the supply is limited. This paper analyses the feasibility of generating electricity and supplying the surplus steam to Daeduk Industrial Complex, by incinerating the combustible municipal waste generated in Daejeon Metropolitan City. The economic feasibility of surplus biogas generated from the anaerobic digestion of food waste and food waste leachate has been analysed. This study estimated resource circulation facility to supply 23,200 m3/day of biogas generated to Daejeon Combined Heat and Power plant. By 2023, it is expected to supply 25.7 tons of steam per hour all year round. The additional steam demand in Daeduk Industrial Complex is estimated as 101,537 tons/year. Surplus biogas will be supplied through an additional 960-m new installation. The cost of biogas is estimated at 30% of the unit biogas production cost. Daejeon Combined Heat and Power plant expects to make 60% additional profit, and Daeduk Industrial Complex and the communities nearby expect to achieve 10% cost savings. It also reduces the dependence of energy on fossil fuels, contributes to national environmental energy policy in reduction in greenhouse gases, creates competitiveness in local business and reduces corporate tax and generates revenue.  相似文献   
6.
This paper contributes to an enhanced understanding of present climatic conditions, observed climate trends and regional climate vulnerability of the Bhutan Himalayas. Bhutan’s complex, often high-altitude terrain and the severe impact of the Indian summer monsoon leads to a strong exposure of the countries’ key economic sectors (agriculture, forestry, hydropower generation and tourism) to climatic changes. Climate change also threatens Bhutan’s vast biodiversity and increases the likelihood of natural hazards (e.g. glacier lake outburst floods, flash floods, droughts and forest fires). A better understanding of Bhutan’s climate and its variability, as well as observed and possible climate impacts, will help in improving the handling of regional social, economic and ecologic challenges not limited to the Himalayas. Only a few climatological studies exist for the eastern Himalayas. They mainly focus on adaptation to immediate threats by glacier lake outbursts. In contrast, this paper (1) investigates the average spatial and inner-annual diversity of the air temperature regime of Bhutan, based on local meteorological observations, (2) discusses past temperature variability, based on global datasets, and (3) relates effects of observed warming to water availability, hydropower development, natural hazards, forests, biodiversity, agriculture, human health and tourism in the Bhutan Himalayas. Results indicate a large spatial and temporal temperature variability within Bhutan and considerably increasing temperatures especially over recent decades. Implications of regional climatic changes on various socio-economic sectors and possible adaptation efforts are discussed.  相似文献   
7.

Purpose

??-Hexachlorocyclohexane (HCH), ??-HCH, and lindane (??-HCH) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and hence must be phased out and their wastes/stockpiles eliminated. At the last operating lindane manufacturing unit, we conducted a preliminary evaluation of HCH contamination levels in soil and water samples collected around the production area and the vicinity of a major dumpsite to inform the design of processes for an appropriate implementation of the Convention.

Methods

Soil and water samples on and around the production site and a major waste dumpsite were measured for HCH levels.

Results

All soil samples taken at the lindane production facility and dumpsite and in their vicinity were contaminated with an isomer pattern characteristic of HCH production waste. At the dumpsite surface samples contained up to 450?g?kg?1 ?? HCH suggesting that the waste HCH isomers were simply dumped at this location. Ground water in the vicinity and river water was found to be contaminated with 0.2 to 0.4?mg?l?1 of HCH waste isomers. The total quantity of deposited HCH wastes from the lindane production unit was estimated at between 36,000 and 54,000?t.

Conclusions

The contamination levels in ground and river water suggest significant run-off from the dumped HCH wastes and contamination of drinking water resources. The extent of dumping urgently needs to be assessed regarding the risks to human and ecosystem health. A plan for securing the waste isomers needs to be developed and implemented together with a plan for their final elimination. As part of the assessment, any polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) generated during HCH recycling operations need to be monitored.  相似文献   
8.

Purpose

Hexachlorocyclohexane (HCH) isomers (??-, ??- and ??- (Lindane)) were recently included as new persistent organic pollutants (POPs) in the Stockholm Convention, and therefore, the legacy of HCH and Lindane production became a contemporary topic of global relevance. This article wants to briefly summarise the outcomes of the Stockholm Convention process and make an estimation of the amount of HCH waste generated and dumped in the former Lindane/HCH-producing countries.

Results

In a preliminary assessment, the countries and the respective amount of HCH residues stored and deposited from Lindane production are estimated. Between 4 and 7 million tonnes of wastes of toxic, persistent and bioaccumulative residues (largely consisting of alpha- (approx. 80%) and beta-HCH) are estimated to have been produced and discarded around the globe during 60 years of Lindane production. For approximately 1.9 million tonnes, information is available regarding deposition. Countries are: Austria, Brazil, China, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, USA, and former USSR. The paper highlights the environmental relevance of deposited HCH wastes and the related POPs?? contaminated sites and provides suggestions for further steps to address the challenge of the legacy of HCH/Lindane production.

Conclusion

It can be expected that most locations where HCH waste was discarded/stockpiled are not secured and that critical environmental impacts are resulting from leaching and volatilisation. As parties to the Stockholm Convention are legally required to take action to stop further POPs pollution, identification and evaluation of such sites are necessary.  相似文献   
9.
Algae have considerable capability for absorbing heavy metals from wastewaters and are considered an effective treatment technology. Heavy metal absorption from coal mine water from the Bhowra Abandoned mine (open cast mine) and the Sudamdih Shaft mine (underground mine waters), both located in Dhanbad, India, by cells of Spirogyra was studied at different dilutions (100 percent, 80 percent, 60 percent, 40 percent, and 20 percent). In the present study, the following 18 metals were selected for analysis: aluminium (Al), arsenic (As), silver (Ag), barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), indium (In), potassium (K), manganese (Mn), nickel (Ni), and vanadium (V). Accordingly, Al and K were found to be higher in concentration with respect to selected metals for both mine waters. The biosorption study revealed that higher amounts of Al, Bi, Co, Cs, Fe, Ga, Mn, Ni, and V were absorbed by algal biomass at 100 percent concentration from both mine waters. The maximum uptake of Cu, As, and Cd was measured at 60 percent, 40 percent, and 20 percent, respectively, for the Bhowra Abandoned mine water. The biosorption equilibrium study revealed that Ag, Al, Ba, Be, Bi, Co, Cr, Cs, Fe, Ga, In, K, Mn, Ni, and V were maximally absorbed by algal biomass at 100 percent concentration from Bhowra mine water, while the maximum uptake by the algal biomass measured for the Sudamidh coal mine water was for Al, As, Bi, Cu, Fe, and Mn at 100 percent concentration. The different physicochemical characteristics of mine water and drinking water standards was also studied. Accordingly, total dissolved solid and chemical oxygen demand concentrations exceeded the drinking water standards for water samples collected from both mines.  相似文献   
10.
Hexavalent chromium-tolerant (1500?mg/L) bacterium MW1 was isolated from harbour water of Paradip Port and evaluated for Cr(VI) reduction potential. The isolate was identified as Exiguobacterium indicum by biochemical and 16S rRNA gene sequence methods. Salt tolerance of the bacterium was evaluated in a wide range of NaCl concentrations (0.5–13%, w/v). The Cr(VI) reduction of the strain was evaluated and optimised with varied Cr(VI) concentrations (100–1000?mg/L), pH (5.0–9.0), temperature (30–40°C) and shaking velocity (100–150?rpm) in two different minimal media (M9 and Acetate). Under optimised conditions, after 192?h of incubation nearly 92%, 50% and 46% reduction in the M9 minimal medium and 91%, 47% and 40% reduction in the acetate minimal medium were observed for 100, 500 and 1000?mg/L of Cr(VI), respectively. The exponential rate equation for Cr(VI) reduction yielded higher rate constant value, that is, 1.27?×?10?2?h?1 (M9) and 1.17?×?10?2?h?1 (Acetate) in case of 100?mg/L and became lower for 500 and 1000?mg/L Cr(VI) concentrations. Further, the association of bacterial cells with reduced product was ascertained by Fourier transform infrared spectrometer, UV–Vis–DRS and field-emission scanning electron microscope–energy-dispersive X-ray analyses. The above study suggests that the higher reducing ability of the marine bacterium E. indicum MW1 will be suitable for Cr(VI) reduction from saline effluents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号