首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
环保管理   11篇
综合类   1篇
  2014年   1篇
  2011年   1篇
  2007年   1篇
  2005年   4篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
2.
Movement of liquor constituents from animal-waste lagoons has the potential to degrade ground water quality. The depth of movement and concentrations of lagoon-liquor constituents in the soil underlying three cattle (Bos taurus)-waste retention lagoons and one swine (Sus scrofa)-waste lagoon were determined. Samples were taken by using a direct-push coring machine, dissected by depth, and analyzed for total N, organic C, CaCO3, pH, cation exchange capacity (CEC), texture, and extractable NO3, NH(4), P, Cl, Ca, Mg, K, and Na. Ammonium N concentrations were greatest in the upper 0.5 m of soil under all four lagoons with concentrations ranging from 94 to 1139 mg kg(-1). Organic N was determined to make up between 39 and 74% of the total N beneath all lagoons. The swine lagoon had 2.4 kg N m(-2) in the underlying soil whereas the cattle lagoon with highest quantity of N had 1.2 kg N m(-2) in the underlying soil. Although N concentrations decreased with depth, N was greater than expected background levels at the bottom of some cores, indicating that the sampling efforts did not reach the bottom of the N plume. Nitrate N concentrations were generally less than 5 mg kg(-1) immediately below the lagoon floor. In the uppermost 0.5 m of soil underlying the swine and three cattle lagoons, NH4+ occupied 44% and between 1 and 22% of the soil cation exchange sites, respectively. The depth of movement of N under these lagoons, as much as 4 m, may pose remediation difficulties at lagoon closure.  相似文献   
3.
Phosphorus release from stream sediments into water could increase P loads leaving agricultural watersheds and contribute to lag-time between implementation of best management practices and improvement in water quality. Improved understanding of P release from stream sediments can assist in setting water quality goals and designing stream monitoring programs. The objective of this study was to estimate the relative potential of sediments and soils to release P to stream water in two agricultural watersheds. Stream sediments were collected from banks, pools, riffles, and depositional features. Soils were sampled from wheat, row crop, pasture, and manure-amended fields. Sediments and soils were analyzed for equilibrium P concentration at zero net P sorption (EPC0), maximum P adsorption capacity (P(max)), anion exchange extractable P (P(lab)), and degree of P saturation. Dissolved reactive P (DRP) of stream water was monitored. Stream sediment EPC0 was similar to or less than EPC0 from field soils; however, P(lab) of stream sediments was three times less than field soils. Sediments were sandy and had low P(max) due to low oxalate-extractable Fe and Al, which could be explained by stream geomorphology. Manure-amended fields had the highest EPC0 and P(lab) due to continued inputs of manure-based P; however, conventionally fertilized fields also represented an important P source due to their vast extent. Stream water DRP was similar to EPC0 of sediments during base flow and similar to EPC0 of field soils during storm flow. These results indicate that sediments in these streams are a relatively minor P source.  相似文献   
4.
Phosphorus enhances eutrophication of fresh water bodies. This study was conducted to determine the influence of tillage and P placement on P losses in runoff water from a somewhat poorly drained soil (Woodson silt loam [fine, smectitic, thermic Abruptic Argiaquoll], 1.0-1.5% slope) in a grain sorghum [Sorghum bicolor (L.) Moenchl-soybean [Glycine mar (L.) Merr] rotation. Chisel-disk-field cultivate (ChT), ridge-till (RT), and no-till (NT) in combination with 0 kg P ha(-1) or 24 kg P ha(-1) broadcast or knifed (applied prior to planting grain sorghum) were studied. Runoff volume and losses of sediment and P were summed over the growing season. Significant interactions between tillage and P placement for soluble P losses were found. For example, soluble P loss in 1999 for NT-broadcast in grain sorghum was 358 g ha(-1); significantly greater than 31 g ha(-1) for NT-knife or 23 g ha(-1) for NT-check. Similar results were found for RT but no such differences were found for ChT. Bioavailable P losses were generally highest with broadcast P placement and for NT and RT. Total P losses were significantly higher at 959 g ha(-1) with broadcast P on grain sorghum in 1998, compared with 521 g ha(-1) for the check and 659 g ha(-1) for the knifed P applications. Total P losses in 1999 for soybeans were only 18 g ha(-1) for NT, which was significantly lower than 75 g ha(-1) for ChT and 66 g ha(-1) for RT. The results indicate that broadcast P applications on RT and NT will increase P losses, but the influence of tillage was not consistent.  相似文献   
5.
Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).  相似文献   
6.
Abstract: The pollutant reduction possible with a given agricultural best‐management practice (BMP) is complex and site‐specific. Water‐quality models can evaluate BMPs, but model results are often limited by the lack of calibrated parameters for a given BMP. This study calibrated runoff prediction of two models (ADAPT and SWAT) for individual field plots having one till and two no‐till management practices. The factors used for runoff calibration were curve number II (CNII) and saturated hydraulic conductivity (Ksat) for ADAPT, and CNII, Ksat, and available water capacity for SWAT. Results were evaluated using coefficient of determination (R2), Nash‐Sutcliffe efficiency (Ef), root‐mean square error, median‐based Ef, and sign tests. Results indicated that for ADAPT, the best‐fit CNII was 66 for the NT/SB (no‐till plot with surface‐broadcast fertilizer) treatment, 68 for the NT/DB (no‐till with deep‐banded fertilizer) treatment, and 70 for the tilled plot, whereas for SWAT the best‐fit CNII was much higher, 86, for all treatments. Neither agreed with the textbook CNII, 78, for sorghum in silty clay loam soil. The best‐fit model parameters for both runoff calibration phases had excellent correlation to monthly totals and moderate correlation to individual events.  相似文献   
7.
In situ stabilization of soil lead using phosphorus   总被引:4,自引:0,他引:4  
In situ stabilization of Pb-contaminated soils can be accomplished by adding phosphorus. The standard remediation procedure of soil removal and replacement currently used in residential areas is costly and disruptive. This study was carried out to evaluate the influence of P and other soil amendments on five metal-contaminated soils and mine wastes. Seven treatments were used: unamended control; 2,500 mg of P/kg as triple superphosphate (TSP), phosphate rock (PR), acetic acid followed by TSP, and phosphoric acid (PA); and 5,000 mg of P/kg as TSP or PR. A significant reduction in bioavailable Pb, as determined by the physiologically based extraction test (PBET), compared with the control upon addition of P was observed in all materials tested. Increasing the amount of P added from 2,500 to 5,000 mg/kg also resulted in a significantly greater reduction in bioavailable Pb. Phosphate rock was equally or more effective than TSP or PA in reducing bioavailable Pb in four out of five soils tested. Preacidification produced significantly lower bioavailable Pb compared with the same amount of P from TSP or PR in only one material. Reductions in Pb bioavailability as measured by PBET were evident 3 d after treatment, and it may indicate that the reactions between soil Pb and P occurred in situ or during the PBET. No further reductions were noted over 365 d. X-ray diffraction data suggested the formation of pyromorphite-like minerals induced by P additions. This study suggests that P addition reduced bioavailable Pb by PBET and has potential for in situ remediation of Pb-contaminated soils.  相似文献   
8.
9.
In situ stabilization of Pb contaminated soils can be accomplished by adding P and Mn(IV) oxide. However, the long-term efficacy of in situ stabilization under continual P removal through plant growth is unknown. Moreover, the effects these treatments have on phytoavailability of other metals (Cd and Zn) commonly associated with Pb in soil are not well understood. Greenhouse experiments using sudax [Sorghum vulgare (L.) Moench] and Swiss chard [Beta vulgaris (L.) Koch] were carried out to evaluate the effects of plant growth on soil Pb bioavailability to humans after addition of P and other amendments, and the effects of these treatments on Pb, Cd, and Zn phytoavailability in three metal-contaminated soils. Eight treatments were used: zero P; 2500 mg of P as triple superphosphate (TSP); 5000 mg of P as TSP or phosphate rock (PR); 5000 mg of Mn oxide/kg; and combinations of Mn oxide and P as TSP or PR. The addition of P and/or Mn oxide significantly reduced bioavailable Pb, as measured by the physiologically based extraction test (PBET), in soils compared with the control even after extensive cropping. The PBET data also suggested that removal of P from soluble P sources by plants could negate the beneficial effects of P on bioavailable Pb, unless sufficient soluble P was added or soluble P was combined with Mn oxide. In general, Ph, Cd, and Zn concentrations in shoot tissues of sudax and Swiss chard were reduced significantly by TSP and did not change with the addition of PR. The combination of PR and Mn oxide significantly reduced Pb concentrations in plants compared with the control.  相似文献   
10.
Interest in plant nutrient issues for sustainable land application of residuals is increasingly driven by environmental concerns. The indicators of concern are P and N in surface waters, nitrate leaching, and emissions of ammonia and greenhouse gases. Federal regulations require residual application rates to be on a N basis at most, and on a P basis when risk of P loss in surface runoff is high. Modeling of mineralization offers the potential for more accurate determinations of potentially available nitrogen (PAN) and quick tests could allow the determination of PAN on residuals immediately before land application. Methods for reducing ammonia emissions from livestock operations and new techniques for quantifying emissions under field conditions are being developed. Calibration and validation of P loss assessment tools is an ongoing concern and the interpretation of edge of field P losses warrants further attention. The solubility of P in residuals and soils can be influenced by various amendments or treatment processes. High available P grains or phytase enzyme supplementation can reduce total and soluble P in animal manures by reducing the need for diet supplementation with inorganic P. The use of synchrotron-based X-ray absorption spectroscopy has identified chemical forms of inorganic P. Considerable progress has been made addressing plant nutrient issues for sustainable land application and interest in this topic will remain strong into the foreseeable future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号