首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   5篇
污染及防治   1篇
  2011年   2篇
  2009年   1篇
  2005年   1篇
  2003年   1篇
  1974年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Poultry litter provides a rich source of nutrients for perennial forages, but the usual practice of surface-applying litter to pastures can degrade water quality by allowing nutrients to be transported from fields in surface runoff, while much of the NH4-N volatilizes. Incorporating litter into the soil can minimize such problems in tilled systems, but has not been used for perennial forage systems. In this study, we minimized disturbance of the crop, thatch, and soil structure by using a knifing technique to move litter into the root zone. Our objective was to determine effects of poultry litter incorporation on quantity and quality of runoff water. Field plots were constructed on a silt loam soil with well-established bermudagrass [Cynodon dactylon (L.) Pers.] and mixed grass forage. Each plot had 8 to 10% slopes, borders to isolate runoff, and a downslope trough with sampling pit. Poultry litter was applied (5.6 Mg ha(-1)) by one of three methods: surface-applied, incorporated, or surface-applied on soil-aeration cuts. There were six treatment replications and three controls (no litter). Nutrient concentrations and mass losses in runoff from incorporated litter were significantly lower (generally 80-95% less) than in runoff from surface-applied litter. By the second year of treatment, litter-incorporated soils had greater rain infiltration rates, water-holding capacities, and sediment retention than soils receiving surface-applied litter. Litter incorporation also showed a strong tendency to increase forage yield.  相似文献   
3.
Poultry litter provides a rich nutrient source for crops, but the usual practice of surface-applying litter can degrade water quality by allowing nutrients to be transported from fields in surface runoff while much of the ammonia (NH3)-N escapes into the atmosphere. Our goal was to improve on conventional titter application methods to decrease associated nutrient losses to air and water while increasing soil productivity. We developed and tested a knifing technique to directly apply dry poultry litter beneath the surface of pastures. Results showed that subsurface litter application decreased NH3-N volatilization and nutrient losses in runoff more than 90% (compared with surface-applied litter) to levels statistically as low as those from control (no litter) plots. Given this success, two advanced tractor-drawn prototypes were developed to subsurface apply poultry litter in field research. The two prototypes have been tested in pasture and no-till experiments and are both effective in improving nutrient-use efficiency compared with surface-applied litter, increasing crop yields (possibly by retaining more nitrogen in the soil), and decreasing nutrient losses, often to near background (control plot) levels. A paired-watershed study showed that cumulative phosphorus losses in runoff from continuously grazed perennial pastures were decreased by 55% over a 3-yr period if the annual poultry litter applications were subsurface applied rather than surface broadcast. Results highlight opportunities and challenges for commercial adoption of subsurface poultry litter application in pasture and no-till systems.  相似文献   
4.
Poultry litter is known to be an excellent organic fertilizer, but the common practice of spreading litter on the surface of pastures has raised serious water-quality concerns and may limit potential benefits of litter applications. Because surface-applied litter is completely exposed to the atmosphere, runoff can transport nutrients into nearby streams and lakes, and much of the ammonium nitrogen volatilizes before it can enter the soil. Our previous research showed that a manual knifing technique to apply dry litter under a perennial pasture surface effectively prevented about 90% of nutrient loss with runoff from surface-applied litter, and tended to increase forage yield. However, this technique (known as subsurface banding) cannot become a practical management option for producers until it is mechanized. To begin that process, we tested an experimental single-shank, tractor-drawn implement designed to apply poultry litter in subsurface bands. Our objective was to compare this mechanized subsurface-banding method against conventional surface application to determine effects on nutrient loss with runoff from a perennial grassland treated with dry poultry litter. Early in the growing season, broiler litter was applied (6.7 dry-weight Mg ha−1) to each plot (except three control plots) using one of two application methods: surface broadcast manually or subsurface banded using the tractor-drawn implement. Simulated rainfall (5 cm h−1) generated 20 min of runoff from each plot for volume and analytical measurements. Results showed that subsurface-banded litter increased forage yield while decreasing nutrient (e.g. N and P) loss in runoff by at least 90% compared to surface-broadcast litter.  相似文献   
5.
We measured NH? emissions from litter in broiler houses, during storage, and after land application and conducted a mass balance of N in poultry houses. Four state-of-the-art tunnel-ventilated broiler houses in northwest Arkansas were equipped with NH? sensors, anemometers, and data loggers to continuously record NH? concentrations and ventilation for 1 yr. Gaseous fluxes of NH?, N?O, CH?, and CO? from litter were measured. Nitrogen (N) inputs and outputs were quantified. Ammonia emissions during storage and after land application were measured. Ammonia emissions during the flock averaged approximately 15.2 kg per day-house (equivalent to 28.3 g NH?per bird marketed). Emissions between flocks equaled 9.09 g NH? per bird. Hence, in-house NH? emissions were 37.5 g NH? per bird, or 14.5 g kg(-1) bird marketed (50-d-old birds). The mass balance study showed N inputs for the year to the four houses totaled 71,340 kg N, with inputs from bedding, chicks, and feed equal to 303, 602, and 70,435 kg, respectively (equivalent to 0.60, 1.19, and 139.56 g N per bird). Nitrogen outputs totaled 70,396 kg N. Annual N output from birds marketed, NH? emissions, litter or cake, mortality, and NO? emissions was 39,485, 15,571, 14,464, 635, and 241 kg N, respectively (equivalent to 78.2, 30.8, 28.7, 1.3, and 0.5 g N per bird). The percent N recovery for the N mass balance study was 98.8%. Ammonia emissions from stacked litter during a 16-d storage period were 172 g Mg(-1) litter, which is equivalent to 0.18 g NH? per bird. Ammonia losses from poultry litter broadcast to pastures were 34 kg N ha (equivalent to 15% of total N applied or 7.91 g NH? per bird). When the litter was incorporated into the pasture using a new knifing technique, NH? losses were virtually zero. The total NH? emission factor for broilers measured in this study, which includes losses in-house, during storage, and after land application, was 45.6 g NH? per bird marketed.  相似文献   
6.
Amendment effects on soil test phosphorus   总被引:1,自引:0,他引:1  
Applications of animal manures have increased soil test P values in many parts of the USA and thus increased the risk that soil P will be transferred to surface water and decrease water quality. To continue farming these areas, landowners need tools to reduce the risk of P losses. A field experiment was conducted near Kurten, TX, on a Zulch fine sandy loam (thermic Udertic Paleustalfs) with Bray-1 P values exceeding 3000 mg P kg(-1) soil (dry wt.) in the A(p) horizon to evaluate the effectiveness of soil amendments for reducing soil test P values. Soils were amended annually from 1999 to 2001 with 1.5 and 5.0 Mg gypsum ha(-1), 1.4 Mg alum ha(-1), or 24.4 Mg ha(-1) of waste paper product high in Al alone or in combination with 1.5 Mg gypsum ha(-1) and/or 1.4 Mg alum ha(-1). These treatments supplied a maximum of 225 and 1163 kg ha(-1) yr(-1) of Al and Ca, respectively. Soil Bray-1 P and dissolved reactive P levels were monitored from 1999 to 2004. None of the soil amendment treatments affected Bray-1 P values. Only annual additions of 5.0 Mg gypsum ha(-1) from 1999 to 2001 significantly reduced soil dissolved reactive P. Dissolved reactive P levels reached minimal levels after two applications of 5.0 Mg gypsum ha(-1) but increased in 2003 and 2004. These results indicate that soil dissolved reactive P levels can be reduced if sufficient amounts of gypsum were added to supply Ca in amounts similar to the soil test P values.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号