首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
基础理论   1篇
  2023年   1篇
  2022年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Utilization of natural resources has multiplied globally, resulting in serious environmental deterioration and impeding the achievement of the Sustainable Development Goals (SDGs). For the harmonious development of human nourishment and the balance of nature, it is vital to evaluate environmental segments' resource usage, transformation, and residue, referred to as ‘footprint,’ in order to highlight carrying capacity and sustainability. This analysis highlights the Environmental Footprint (EF) of India per state from 2010 to 2020 in terms of hectares per capita. This study evaluates India's biological, hydrological, energy, ecological, and pollution footprints, carrying capacity, environmental pressure, and environmental deficit using 17 distinct parameters categorized under the themes of biological resource, hydrological resource, energy resource, and pollution concentration. We proposed a reoriented methodology and EF concepts that determine India's footprint, carrying capacity, nature of sustainability, environmental pressure index, and its consequential links to the 2030 SDGs. As a result, the biological resources contributed to ~50% of the environmental footprint, while hydrological, energy, and pollutants made up the remaining. Between 2010 and 2020, Delhi, Uttar Pradesh, Bihar, and West Bengal had the highest EF, while Jammu and Kashmir and the north-eastern provinces had the lowest. During the research period, the ecological deficit in India has increased overall. India impedes the 2030 SDGs; therefore, the study provides a picture of resource consumption, waste generation, economic growth, and societal changes, enabling academics and policymakers to redefine or document policy for a more sustainable future.  相似文献   
2.
Environmental Chemistry Letters - To achieve the goal of green chemistry and sustainable development, catalyst-free reactions and use of naturally abundant resources are gaining importance. In last...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号