首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   2篇
社会与环境   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Sediments impounded within flood control reservoirs are potentially important archives of environmental and geomorphic processes occurring within drainage basins. The concentrations of select sediment-associated trace elements were assessed within the impoundment of Grenada Lake, a relatively large flood control reservoir in Mississippi with a history of contaminant bioaccumulation in fish. The post-construction sediments (after 1954) are discriminated from the pre-construction sediments (before 1954) based on depth variations in sediment texture and 137Cs emissions. The concentrations of select trace elements of the post-1954 sediments all are statistically greater than the pre-1954 sediments, and these same sediments also are enriched in clay. Once these concentrations are normalized by clay content, all trace elements in the post-1954 sediments are lower in concentration than the pre-1954 normalized sediments. Moreover, the trace elements when normalized by clay or Al content show virtually no change vertically (over time) within the reservoir impoundment. This suggests that the sources of these sediment-associated trace elements within Grenada Lake, whether natural or anthropogenic, have not changed appreciably over the lifespan of the reservoir and that the degradation of sedimentologic and ecologic indices within the lake are due to the sequestration of clay or clay-sized materials.  相似文献   
2.
Analysis of soil redistribution and sediment sources in semiarid and arid watersheds provides information for implementing management practices to improve rangeland conditions and reduce sediment loads to streams. The purpose of this research was to develop sediment budgets and identify potential sediment sources using 137Cs and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137Cs and selected physical and chemical properties (i.e., bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at measuring flume sites on the Walnut Gulch Experimental Watershed were also analyzed for these properties. Soil redistribution measured using 137Cs inventories for a small shrub-dominated subwatershed and a small grass-dominated subwatershed found eroding areas in these subwatersheds were losing −5.6 and −3.2 t ha−1 yr−1, respectively; however, a sediment budget for each of these subwatersheds, including depositional areas, found net soil loss to be −4.3 t ha−1 yr−1 from the shrub-dominated subwatershed and −0.1 t ha−1 yr−1 from the grass-dominated subwatershed. Generally, the suspended sediment collected at the flumes of the six other subwatersheds was enriched in silt and clay. Using a mixing model to determine sediment source indicated that shrub-dominated subwatersheds were contributing most of the suspended sediment that was measured at the outlet flume of the Walnut Gulch Experimental Watershed. The two methodologies (sediment budgets and sediment source analyses) indicate that shrub-dominated systems provide more suspended sediment to the stream systems. The sediment budget studies also suggest that sediment yields measured at the outlet of a watershed may be a poor indicator of actual soil redistribution rates within these semiarid watersheds. Management of these semiarid rangelands must consider techniques that will protect grass-dominated areas from shrub invasion to improve rangeland conditions.  相似文献   
3.
Phosphate adsorption by ferrihydrite-amended soils   总被引:1,自引:0,他引:1  
New technology and approaches for reducing P in runoff from high sediment yield areas are essential due to implementation of increasingly rigorous water quality standards. The objectives of this research were to characterize ferrihydrite (Fe(5)HO(8).4H(2)O) in terms of its ability to adsorb P from soil solutions and relate its P adsorptive capacity to several soil properties that influence P mobility. A naturally occurring ferrihydrite, collected as an Fe oxide sludge by-product from a water treatment facility, was equilibrated with soil samples at equivalent rates of 0, 0.34, 3.36, 16.80, and 33.60 Mg ha(-1) for a 60-d period. Individual 2-g subsamples of each soil were then equilibrated with 0, 5, 10, 20, and 40 mg kg(-1) P in 20 mL of 0.01 M CaCl(2) on a reciprocating shaker for 24 h. After 24 h, P in solution was measured by colorimetric methods, and designated as final P concentrations. The data indicated that the unamended soils with a pH of <6.0 adsorbed, in some cases, 50 times more P than soils with a pH of >7.0. The final P concentrations, averaged for all initial P concentrations and ferrihydrite rates, ranged from 0.09 to 4.63 mg kg(-1), and were most highly correlated with pH (r = 0.844; P < or = 0.01), oxalate-extractable Fe (r = -0.699; P < or = 0.10), and dithionite-extractable Fe (r = -0.639; P < or = 0.10) contents of the unamended soils. In terms of individual soils, correlation coefficients (r) for final P concentrations versus ferrihydrite amendment rates indicated a statistically significant (P < or = 0.001) negative relationship at all initial P concentrations for most A horizons. The r values for the high Fe oxide content B horizon soils did not show a statistically significant response to ferrihydrite additions. The results indicate that P adsorption, in soils amended with ferrihydrite, will be greatest under acid pH conditions below the ferrihydrite zero point of charge (pH 5.77), and low incipient Fe oxide contents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号