首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
环保管理   1篇
  2007年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Pine–oak forests are of high ecological importance worldwide, but many are threatened by uncharacteristically severe wildfire. Forest restoration treatments, including the reintroduction of a surface fire regime, are intended to decrease fire hazard and emulate historic ecosystem structure and function. Restoration has recently received much management attention and short-term study, but little is known about longer-term ecosystem responses. We remeasured a replicated experimental restoration site in the southwestern United States 5 years after treatments. Basal area, tree density, and canopy cover decreased in the treated units at a faster rate than in controls. Delayed mortality, not evident right after treatment, decreased density modestly (13% in treated units and 10% in controls) but disproportionately affected large trees (“large” ponderosa pines were those with diameter at breast height [dbh] ≥37.5 cm; other species dbh ≥20 cm). In treated units, 10.9 large trees ha–1 died, whereas 6.2 trees ha–1 died in control units. Compared with reference conditions, the experimental blocks remained higher in pine density and, in three of the four blocks, in basal area. Pine trees grew significantly faster in treated units than in controls, enough to reach the reference level of basal area in 6 years. Although mortality of large trees is a concern, the treated units have vigorous growth and low density, indicating that they will be relatively resistant to future drought and fire events. Similar treatments may be beneficial in many areas of the United States and in related pine-oak ecosystems elsewhere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号