首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
废物处理   4篇
环保管理   8篇
综合类   1篇
基础理论   3篇
污染及防治   10篇
评价与监测   7篇
社会与环境   1篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
2.
The environmentally sustainable disposal and recycling of ever increasing volumes of electronic waste has become a global waste management issue. The addition of up to 25% polymeric waste PCBs (printed circuit boards) as fillers in polypropylene (PP) composites was partially successful: while the tensile modulus, flexural strength and flexural modulus of composites were enhanced, the tensile and impact strengths were found to decrease. As a lowering of impact strength can significantly limit the application of PP based composites, it is necessary to incorporate impact modifying polymers such as rubbery particles in the mix. We report on a novel investigation on the simultaneous utilization of electronic and automotive rubber waste as fillers in PP composites. These composites were prepared by using 25 wt.% polymeric PCB powder, up to 9% of ethylene propylene rubber (EPR), and PP: balance. The influence of EPR on the structural, thermal, mechanical and rheological properties of PP/PCB/ EPR composites was investigated. While the addition of EPR caused the nucleation of the β crystalline phase of PP, the onset temperature for thermal degradation was found to decrease by 8%. The tensile modulus and strength decreased by 16% and 19%, respectively; and the elongation at break increased by ~71%. The impact strength showed a maximum increase of ~18% at 7 wt.%–9 wt.% EPR content. Various rheological properties were found to be well within the range of processing limits. This novel eco-friendly approach could help utilize significant amounts of polymeric electronic and automotive waste for fabricating valuable polymer composites.
  相似文献   
3.
The combined action of urbanization (change in land use) and increase in vehicular emissions intensifies the urban heat island (UHI) effect in many cities in the developed countries. The urban warming (UHI) enhances heat-stress-related diseases and ozone (O3) levels due to a photochemical reaction. Even though UHI intensity depends on wind speed, wind direction, and solar flux, the thermodynamic properties of surface materials can accelerate the temperature profiles at the local scale. This mechanism modifies the atmospheric boundary layer (ABL) structure and mixing height in urban regions. These changes further deteriorate the local air quality. In this work, an attempt has been made to understand the interrelationship between air pollution and UHI intensity at selected urban areas located at tropical environment. The characteristics of ambient temperature profiles associated with land use changes in the different microenvironments of Chennai city were simulated using the Envi-Met model. The simulated surface 24-hr average air temperatures (11 m above the ground) for urban background and commercial and residential sites were found to be 30.81 ± 2.06, 31.51 ± 1.87, and 31.33 ± 2.1ºC, respectively. The diurnal variation of UHI intensity was determined by comparing the daytime average air temperatures to the diurnal air temperature for different wind velocity conditions. From the model simulations, we found that wind speed of 0.2 to 5 m/sec aggravates the UHI intensity. Further, the diurnal variation of mixing height was also estimated at the study locations. The estimated lowest mixing height at the residential area was found to be 60 m in the middle of night. During the same period, highest ozone (O3) concentrations were also recorded at the continuous ambient air quality monitoring station (CAAQMS) located at the residential area.

Implications: An attempt has made to study the diurnal variation of secondary pollution levels in different study regions. This paper focuses mainly on the UHI intensity variations with respect to percentage of land use pattern change in Chennai city, India. The study simulated the area-based land use pattern with local mixing height variations. The relationship between UHI intensity and mixing height provides variations on local air quality.  相似文献   

4.
With growing concerns of fossil fuel resources availability and the volatility of crude oil price, it is becoming imperative day by day to utilize the renewable sources of energy in a sustainable, environment friendly and energy efficient manner. India is the world’s second largest producer of cotton after China. India also has several agricultural and forest residues, and cotton residue is one of the most abundant agricultural residues after rice and wheat residues. The hydropyrolysis of cotton residues has been carried out at various pressures (1, 20 and 40 bar) and temperatures (300, 350, 400 and 450 °C). The effects of temperature and pressure have been studied to understand their yield patterns, and it has been observed that 20 bar pressure and 400 °C are the optimum conditions. The thermogravimetric analysis shows that cotton residue has two significant decomposition temperatures. The SEM, XRD patterns and FT-IR spectra clearly indicate the decomposition of the macromolecular structure of the cotton residue and formation of low molecular weight hydrocarbons suitable for various applications.  相似文献   
5.
Paper mill effluents may contain polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) that are normally generated due to chlorinated bleaching of pulp and paper. We used the semipermeable membrane device (SPMD) to monitor PCDD/F levels upstream and downstream of a paper mill on the Androscoggin River, in Jay (ME). Following the 36 day deployment, SPMD dialysis and cleanup, the samples were analyzed by HRGC/HRMS. Total concentrations of PCDD/Fs in SPMDs (sum of all tetra-through octachlorinated congeners) ranged from 4.71 pg g(-1) to 26.26 pg g(-1). Five out of the targeted 17 toxic congeners were detected, including: 2,3,7,8-TCDF; 1,2,3,7,8-PeCDF; 2,3,4,7,8-PeCDF; 1,2,3,4,6,7,8-HpCDD and OCDD. Permeability reference compounds (PRCs) were used for in situ calibration of the SPMD sampling rate (Rs). In all sites, water concentrations were the highest for OCDD (0.081-0.103 pg l(-1)), and the lowest for 1,2,3,7,8-PeCDF (0.005-0.009 pg l(-1)). There was not a consistent pattern of upstream-downstream gradient in the PCDD/F levels. This suggested that processes other than the mill in Jay (multiple sources, river dynamics) governed the flux of PCDD/Fs in the sampling locations. The SPMD results were validated by comparison to other studies on the Androscoggin River and elsewhere, confirming the potential of the device as a useful monitoring technique for PCDD/Fs in large river systems.  相似文献   
6.
This paper describes the development of artificial neural network (ANN) based carbon monoxide (CO) persistence (ANNCOP) models to forecast 8-h average CO concentration using 1-h maximum predicted CO data for the critical (winter) period (November–March). The models have been developed for three 8-h groupings of 10 p.m. to 6 a.m., 6 a.m. to 2 p.m. and 2–10 p.m., at two air quality control regions (AQCRs) in Delhi city, representing an urban intersection and an arterial road consisting heterogeneous traffic flows. The result indicates that time grouping of 2–10 pm is dominantly affected by inversion conditions and peak traffic flow. The ANNCOP model corresponding to this grouping predicts the 8-h average CO concentrations within the accuracy range of 68–71%. The CO persistence values derived from ANNCOP model are comparable with the persistence values as suggested by the Environmental Protection Agency (EPA), USA. This work demonstrates that ANN based model is capable of describing winter period CO persistence phenomena.  相似文献   
7.
The main purpose of a water distribution system (WDS) is to deliver safe water of desirable quality, quantity and continuity to consumers. However, in many cases, a WDS fails to fulfill its goal owing to structural and associated hydraulic failures and/or water quality failures. The impact of these failures can be reduced significantly if preventive actions are taken based on their potential of occurrences or if a failure occurs and is detected within a minimum period of time after its occurrence. The aim of this research was to develop a forensic system for WDS failures. As part of the proposed forensic analysis, a framework has been developed, which investigates structural and associated hydraulic failures as well as water quality failures and integrates all failure investigation under a single platform. Under this framework, four different models have been developed to evaluate and identify structural and associated hydraulic failures and water quality failures. If a failure is detected in the system, the framework is capable of identifying the most probable location of the failure. To investigate the effectiveness of the proposed framework, the developed models have been tested and implemented in different WDSs.  相似文献   
8.
Environmental Science and Pollution Research - Recent advancements in environmental monitoring and analysis have created public and institutional awareness on the social and health impacts of air...  相似文献   
9.
Regional Environmental Change - Landscapes are changing rapidly in regions where rural people live adjacent to protected parks and reserves. This is the case in highland East Africa, where many...  相似文献   
10.
Streamflow monitoring in the Colorado River Basin (CRB) is essential to ensure diverse needs are met, especially during periods of drought or low flow. Existing stream gage networks, however, provide a limited record of past and current streamflow. Modeled streamflow products with more complete spatial and temporal coverage (including the National Water Model [NWM]), have primarily focused on flooding, rather than sustained drought or low flow conditions. Objectives of this study are to (1) evaluate historical performance of the NWM streamflow estimates (particularly with respect to droughts and seasonal low flows) and (2) identify characteristics relevant to model inputs and suitability for future applications. Comparisons of retrospective flows from the NWM to observed flows from the United States Geological Survey stream gage network over 22 years in the CRB reveal a tendency for underestimating low flow frequency, locations with low flows, and the number of years with low flows. We found model performance to be more accurate for the Upper CRB and at sites with higher precipitation, snow percent, baseflow index, and elevations. Underestimation of low flows and variable model performance has important implications for future applications: inaccurate evaluations of historical low flows and droughts, and less reliable performance outside of specific watershed/stream conditions. This highlights characteristics on which to focus future model development efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号