首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
环保管理   5篇
综合类   2篇
基础理论   8篇
污染及防治   1篇
社会与环境   1篇
  2019年   1篇
  2016年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2005年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
M. J. Mueller and D. R. Gorin (J. Environ. Econ. Manag.12, 83–89 (1985)) claim that the U-shaped price paths found in M. E. Slade (J. Environ. Econ. Manag.9, 122–137 (1982a)) result from a misspecification and disappear when the equation is properly specified. To produce their result, they rely on a radical shift in technology that is claimed to have occurred in 1920. There is, however, no evidence of a technology shift in that year. Instead, a gradual adoption of new mining techniques beginning in 1904 is seen. In addition to this misspecification, they incorrectly locate other exogenous influences such as wars and recessions. When corrections are made, a radically different picture emerges. With the new equation, the U-shaped price pattern persists, and the only exogenous influence that is consistently insignificant is the technology shift.  相似文献   
2.
This paper attempts to reconcile the theoretical predictions of increasing real prices for nonrenewable natural-resource commodities obtained from Hotelling-style models with the empirical findings of falling prices for these commodities. A theoretical model for relative-price movements is derived for the case of exogenous technical change and endogenous change in the grade of ores mined. The model suggests a U-shaped time path for relative prices. The implied price movements are tested for all the major metals and fuels and the model parameters are found to be statistically significant for 11 out of the 12 commodities tested.  相似文献   
3.
Contamination of aquatic ecosystems with heavy metals has been receiving increased worldwide attention due to their harmful e ects on human health and other organisms in the environment. Most of the studies dealing with toxic e ects of metals deal with single metal species, while the aquatic organisms are typically exposed to mixtures of metals. Hence, in order to provide data supporting the usefulness of freshwater fish as indicators of heavy metal pollution, it has been proposed in the present study to investigate the bioaccumulation and depuration of chromium in the selected organs of freshwater fingerlings Cirrhinus mrigala, individually and in binary solutions with nickel. The results show that the kidney is a target organ for chromium accumulation, which implies that it is also the “critical” organ for toxic symptoms. The results further show that accumulation of nickel in all the tissues of C. mrigala is higher than that of chromium. In addition, the metal accumulations of the binary mixtures of chromium and nickel are substantially higher than those of the individual metals, indicating synergistic interactions between the two metals. Theoretically the simplest explanation for an additive joint action of toxicants in a mixture is that they act in a qualitatively similar way. The observed data suggest that C. mrigala could be suitable monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.  相似文献   
4.
Application of appropriate environmentally conscious manufacturing strategies enables the sustainable development of products and processes. Automotive component manufacturers recognise the potential of applying appropriate strategies for attaining Triple Bottom Line benefits. In this context, three strategies such as eco-efficiency, waste minimisation and material efficiency are being applied to minimise environmental impacts associated with the manufacture of automotive products and its associated processes. A case study of an automotive component manufacturing firm has been exemplified. After conducting the study, the potential environmental impact was reduced by 20% and eco-efficiency was improved by 13%. Further, improvements have been observed in terms of overall resource consumption and material efficiency. The overall power consumption was reduced by 18% and weight of the component was reduced by 11%. The study aimed at improving the sustainable performance of product by incorporating green and environmentally friendlier manufacturing practices.

Abbreviations: USEPA: United Nations Environmental Protection Agency; OECD: Organisation for Economic Co-operation and Development; WBCSD: World Business Council for Sustainable Development; Eco-QFD: Environmental Quality Function Deployment; WCED: World Commission on Environment and Development; LCA: Life Cycle Assessment  相似文献   

5.
Lead is a widespread element and one of the persistent and cumulative pollutants of the environment. The present study deals with the bioaccumulation of lead and the influence of chelating agents, meso 2,3-dimercaptosuccinic acid (DMSA), D-Penicillamine and CaNa2EDTA in reducing the concentration of lead on the selected organs of Catla catla fingerlings for both acute and chronic exposures by using ICP-AES. It is inferred from the present findings that there was a correlation between environmental conditions and the heavy metal contents of the fish. The highest concentration of lead is found in kidney tissues and the lowest in muscle tissues. The accumulation pattern of lead in the selected organs of Catla catla is: kidney > liver > gill > brain > muscle. Also, it has been found that the treatment of chelating agents, DMSA, D-Penicillamine and CaNa2EDTA reduces the concentration of lead significantly for both acute and chronic exposures. The results also show that DMSA is the most effective chelator of lead in reducing the body burden of C. catla fingerlings. The observed data further indicate that C. catla could be suitable for monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.  相似文献   
6.
In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production.  相似文献   
7.
An econometric model of the US copper and aluminium industries is simulated to evaluate the impact that higher energy prices and declining ore quality will have on copper–aluminium substitution and recycling in the USA in the next decade. The unique features of the model described here include the calculation of elasticities of substitution between copper and aluminium from the production functions of the using sectors, the use of statistical (not engineering) cost functions for both the primary and the secondary industries, and the explicit consideration of ore- quality deterioration as primary production progresses.  相似文献   
8.
Heavy metal discharges to aquatic environment are of great concern due to their toxicity and accumulative behavior. Zinc is an essential trace element required for different physiological functions and plays important role in cellular metabolism. However, it becomes toxic when elevated concentrations are introduced into the environment. The aim of this work is to analyze zinc induced biochemical changes in the brain tissues of Labeo rohita fingerlings using Fourier Transformation Infrared Spectroscopy. Several important features have been observed in the zinc intoxicated brain tissues, namely, altered membrane lipid, altered protein profile and decreased glycogen content, indicating an alteration in the lipid and protein profiles leading to modification in membrane composition. Further, it is observed that the acute exposure to zinc causes some alteration in protein profile with a decrease in α-helix and an increase in random coil structures.  相似文献   
9.
Technological options for the management of biosolids   总被引:1,自引:0,他引:1  
BACKGROUND, AIM, AND SCOPE: Large quantities of biosolids (sewage sludge), which are produced from municipal wastewater treatment, are ever-increasing because of the commissioning of new treatment plants and continuous upgrades of the existing facilities. A large proportion of biosolids are currently landfilled. With increasing pressure from regulators and the general public, landfilling of biosolids is being phased out in many countries because of potential secondary pollution caused by leachate and the emission of methane, a potent greenhouse gas. Biosolids contain nutrients and energy that can be used beneficially. Significant efforts have been made recently to develop new technologies to manage biosolids and make useful products from them. In this paper, we provide a review of the technologies in biosolids management. MATERIALS AND METHODS: A survey of literature was conducted. RESULTS: At present, the most common beneficial use of biosolids is agricultural land application because of inherent fertilizer values found in biosolids. Expansion of land application, however, may be limited in the future because of more stringent regulatory requirements and public concern about food chain contamination in some countries. Perceived as a green energy source, the combustion of biosolids has received renewed interest. Anaerobic digestion is generally a more effective method than incineration for energy recovery, and digested biosolids are suitable for further beneficial use through land application. Although conventional incineration systems for biosolid management generally consume more energy than they produce because of the high moisture content in the biosolids, it is expected that more combustion systems, either monocombustion or cocombustion, will be built to cope with the increasing quantity of biosolids. DISCUSSION: Under the increasingly popular low-carbon economy policy, biosolids may be recognized as a renewable fuel and be eligible for 'carbon credits'. Because ash can be used to manufacture construction materials, combustion can provide a complete management for biosolids. A number of advanced thermal conversion technologies (e.g., supercritical water oxidation process and pyrolysis) are under development for biosolids management with a goal to generate useful products, such as higher quality fuels and recovery of phosphorus. With an ever-increasing demand for renewable energy, growing bioenergy crops and forests using biosolids as a fertilizer and soil amendment can not only contribute to the low-carbon economy but also maximize the nutrient and carbon value of the biosolids. CONCLUSIONS: Land application of biosolids achieves a complete reuse of its nutrients and organic carbon at a relatively low cost. Therefore, land application should become a preferred management option where there is available land, the quality of biosolids meet regulatory requirements, and it is socially acceptable. Intensive energy cropping and forest production using biosolids can help us meet the ever-increasing demand for renewable energy, which can eliminate the contamination potential for food sources, a common social concern about land application of biosolids. In recent years, increasing numbers of national and local governments have adopted more stringent regulations toward biosolid management. Under such a political climate, biosolids producers will have to develop multireuse strategies for biosolids to avoid being caught because a single route management practice might be under pressure at a short notice. Conventional incineration systems for biosolids management generally consume more energy than they produce and, although by-products may be used in manufacturing, this process cannot be regarded as a beneficial use of biosolids. However, biosolids are likely to become a source of renewable energy and produce 'carbon credits' under the increasingly popular, low-carbon economy policy. RECOMMENDATIONS AND PERSPECTIVES: To manage biosolids in a sustainable manner, there is a need for further research in the following areas: achieving a higher degree of public understanding and acceptance for the beneficial use of biosolids, developing cost-efficient and effective thermal conversions for direct energy recovery from biosolids, advancing technology for phosphorus recovery, and selecting or breeding crops for efficient biofuel production.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号