首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
环保管理   1篇
综合类   1篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

“Waste-to-energy” (WTE) technologies have been presented as one of the avenues to improve the management of solid waste whilst promoting clean and healthy urban environments through the recovery of waste and generation of energy. Research suggests that with the right investment in technologies and institutional changes, waste can potentially become a resource that can contribute to the socio-economic development of cities. It is in this context that this paper presents a review of the literature on WTE technologies and their implications on sustainable waste management in urban areas. The paper particularly contributes to our understanding of WTE technologies and its potential on Municipal Solid Waste Management (MSWM) in Johannesburg, South Africa. It is estimated that the city of Johannesburg’s landfills airspace will be completely depleted by year 2023. This projection becomes a motivation for the identification of suitable WTE alternative avenues to manage waste in the city. The paper argues that WTE technologies can contribute significantly to sustainable waste management, economic growth, ecological and environmental well-being.  相似文献   
2.
The fate and behaviour of WO_3 and TiO_2 mixture were investigated following the Organisation for Economic Co-operation and Development 303 A guidelines. The nanoparticles were found not to influence the chemical oxygen demand removal efficiency which was maintained 80%hence the activated sludge process was on affected. The nanoparticles were eliminated from the wastewater with a greater percentage of 99.8% for TiO_2 and 95.5% for WO_3 found in the sludge.The activated sludge process also had no effect of the polymorphs of the nanoparticles as X-ray diffraction revealed presence of monoclinic WO_3 and anatase TiO_2 which were spiked into the influent. The nanoparticles were mainly removed by bio-adsorption on the activated sludge surface. The total plate count revealed that the bacterial colonies present in the control and the test units were comparable during the gradual introduction of nanoparticles in the chambers.The biomass was 0.75 MLVSS/MLSS(mixed liquor volatile suspended solids/mixed liquor suspended solids) in both the aeration vessels thus a greater proportion of the sludge were the microorganisms. A greater percentage of the Ti and W found in the effluent was mainly due to the nanoparticles adsorbed on the suspended solids with only 3.6% Ti and 28.6% W due to dissolution of nanoparticles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号