首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   2篇
  2015年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
2.
Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s(-1); (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and nearground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号