首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
  国内免费   1篇
安全科学   3篇
废物处理   4篇
环保管理   7篇
综合类   6篇
基础理论   9篇
污染及防治   11篇
评价与监测   3篇
社会与环境   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1976年   1篇
  1975年   1篇
  1956年   1篇
排序方式: 共有46条查询结果,搜索用时 250 毫秒
1.
Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.  相似文献   
2.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   
3.
Journal of Material Cycles and Waste Management - Biofilters have been recognized as a key technology in the mitigation of greenhouse gases (GHG) emitted by landfills. This study aimed to evaluate...  相似文献   
4.
硅烷的危险特性及安全操作   总被引:2,自引:0,他引:2  
硅烷作为一种提供硅组分的气体源 ,广泛应用于微电子、光电器件以及高纯度多晶硅生产 ,潜在应用前景更为广阔。随着硅烷应用领域的扩大 ,硅烷安全使用和处理已成为首要的问题。通过对硅烷着火的研究和事故分析表明 ,硅烷的危险特性在于它与氧反应的极强活性 :自燃 ,着火下限低 ,燃烧能量大。由于硅烷的自燃特性 ,对它的安全防范 ,与一般的易燃易爆物质相比 ,除一些共同点之外 ,还有显著的不同之处。在操作中必须预防高浓度硅烷与氧接触发生自燃着火。同时还必须防止硅烷泄漏在有限的空间内与氧混合 ,形成不稳定爆炸性气团。笔者综合分析和研讨了硅烷着火和爆炸的最新进展和成果 ,在实践经验和分析典型硅烷事故的基础上 ,提出了处理和使用硅烷的安全操作要点。  相似文献   
5.
6.
Background. Aims and Scope Lakes developing in volcano craters can become highly acidic through the influx of volcanic gases, yielding one of the chemically most extreme natural environments on earth. The Kawah Ijen crater lake in East Java (Indonesia) has a pH 〈 0.3. It is the source of the extremely acid and metal-polluted river Banyupahit (45 km). The lake has a significant impact on the river ecosystem as well as on a densely populated area downstream, where agricultural fields are irrigated with water with a pH between 2.5 and 3.5. The chemistry of the river water seemed to have changed over the past decade and the negative effect in the irrigation area increased. A multidisciplinary approach was used to investigate the altered situation and to get insight in the water chemistry and the hydrological processes influencing these alterations. Moreover, a first investigation of the effects of the low pH on ecosystem health and human health was performed. Methods Water samples were taken at different sites along the river and in the irrigation area. Sampling for macroinvertebrates was performed at the same sites. Samples of soil and crop were taken in the irrigation area. All samples were analysed for metals (using ICP-AES) and other elements, and concentrations were compared to local and international standards. Results and Discussion The river carries a very high load of SO4, NH4, PO4, Cl, F, Fe, Cu, Pb, Zn, Al and other potentially toxic elements. Precipitation and discharge data over the period of 1980 – 2000 clearly show that the precipitation on the Ijen plateau influences water chemistry of the downstream river. Metal concentrations in the river water exceed the concentrations mentioned in Indonesian and international quality guidelines, even in the downstream river and the irrigation area. Some metal concentrations are extremely high, especially iron (up to 1600 mg/l) and aluminium (up to 3000 mg/l). The food-webs in the acidic parts of the river are highly underdeveloped. No invertebrates were present in the extremely acid water and, at pH 2.3, only chironomids were found. This also holds true for the river water with pH 3.3 in the downstream area. Agricultural soils in the irrigation area have a pH of 3.9 compared to a pH of 7.0 for soils irrigated with neutral water. Decreased yields of cultivated crops are probably caused by the use of Al containing acid irrigation water. Increased levels of metals (especially Cd, Co, Ni and Mn) are found in different foodstuffs, but still remain within acceptable ranges. Considering local residents” diets, Cd levels may lead to an increased risk for the human health. Fluoride exposure is of highest concern, with levels in drinking water exceeding guideline values and a lot of local residents suffering from dental fluorosis. Conclusions, Recommendations and Outlook In short, our data indicate that the Ijen crater lake presents a serious threat to the environment as well as human health and agricultural production.  相似文献   
7.
8.
9.
Few studies have examined the water quality impact of manure use in no-tillage systems. A lysimeter study in continuous corn (Zea mays L.) was performed on Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) to evaluate the effect(s) of tillage (no-till [NT] and chisel-disk [CD]), nitrogen fertilizer rate (0 and 168 kg N ha(-1)), and dairy manure application timing (none, spring, fall, or fall plus spring) on NO3-N, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)acetanilide] concentrations in leachate collected at a 90-cm depth. Herbicides were highest immediately after application, declining to less than 4 mug L(-1) in about two months. Manure and manure timing by tillage interactions had little effect on leachate herbicides; rather, the data suggest that macropores rapidly transmitted atrazine and alachlor through the soil. Tillage usually did not significantly affect leachate NO3-N, but no-tillage tended to cause higher NO(3)-N. Manuring caused higher NO3-N concentrations; spring manuring had more impact than fall, but fall manure contained about 78% of the N found in spring manure. Nitrate under spring "only fertilizer" treatment exceeded 10 mg L(-1) 38% of the time, compared with 15% for spring only manure treatment. After three years, manured soil leachate NO3-N exceeded that for soil receiving only N fertilizer. Soil profile (90 cm) NO3-N after corn harvest exceeding 22 kg N ha(-1) was associated with winter leachate NO3-N greater than 10 mg N L(-1). Manure can be used effectively in conservation tillage systems on this and similar soils. Accounting for all N inputs, including previous manure applications, will be important.  相似文献   
10.
Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE - Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4-5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号