首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
环保管理   6篇
综合类   7篇
基础理论   1篇
污染及防治   2篇
  2018年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1996年   1篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
3.
Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socio-economic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.  相似文献   
4.
A reverse-phase high pressure liquid chromatography/mass spectrometry (HPLC/MS method was developed for estimating n-octanol/water partition coefficients (Kow) of anthropogenic molecules in complex chemical mixtures (e.g., complex effluents and solid waste leachates). The average error for an estimated log Kow was ca. 0.5 and this error was similar for both aliphatic and aromatic compounds. The minimum level of detection using the total ion current profile generally decreased with increasing molecular weight between 100 and 600 daltons. Results obtained demonstrate that the HPLC/MS method is a viable technique for estimating log Kow's of anthropogenic chemicals in complex environmental samples.  相似文献   
5.
Alternative methods for applying livestock manure to no-till soils involve environmental and economic trade-offs. A process-level farm simulation model (Integrated Farm System Model) was used to evaluate methods for applying liquid dairy (Bos taurus L.) and swine (Sus scrofa L.) manure, including no application, broadcast spreading with and without incorporation by tillage, band application with soil aeration, and shallow disk injection. The model predicted ammonia emissions, nitrate leaching, and phosphorus (P) runoff losses similar to those measured over 4 yr of field trials. Each application method was simulated over 25 yr of weather on three Pennsylvania farms. On a swine and cow-calf beef operation under grass production, shallow disk injection increased profit by $340 yr(-1) while reducing ammonia nitrogen and soluble P losses by 48 and 70%, respectively. On a corn (Zea mays L.)-and-grass-based grazing dairy farm, shallow disk injection reduced ammonia loss by 21% and soluble P loss by 76% with little impact on farm profit. Incorporation by tillage and band application with aeration provided less environmental benefit with a net decrease in farm profit. On a large corn-and-alfalfa (Medicago sativa L.)-based dairy farm where manure nutrients were available in excess of crop needs, incorporation methods were not economically beneficial, but they provided environmental benefits with relatively low annual net costs ($13 to $18 cow). In all farming systems, shallow disk injection provided the greatest environmental benefit at the least cost or greatest profit for the producer. With these results, producers are better informed when selecting manure application equipment.  相似文献   
6.
Stable carbon isotopes are important tools to assess potential storage sites for CO2, as they allow the quantification of ionic trapping via isotope mass balances. In deep geological formations high p/T conditions need to be considered, because CO2 dissolution, equilibrium constants and isotope fractionation of dissolved inorganic carbon (DIC) depend on temperature, pressure and solute composition. After reviewing different approaches to account for these dependencies, an expanded scheme is presented for speciation and carbon isotope fractionation of DIC and dissolution of CaCO3 for pCO2 up to 100 bar, pH down to 3 and temperatures of up to 200 °C. The scheme evaluates the influence of respective parameters on isotope ratios during CO2 sequestration. The pCO2 and pH are the dominant controlling factors in the DIC/δ13C/pH system. The fugacity of CO2 has major impact on DIC concentrations at temperatures below 100 °C at high pCO2. Temperature dependency of activities and equilibrium dominates at temperatures above 100 °C. Isotope ratios of DIC are expected to be about 1–2‰ more depleted in 13C compared to the free CO2 at pCO2 values above 10 bar. This depletion is controlled by carbon isotope fractionation between CO2 and H2CO3* which is the dominant species of DIC at the resulting pH below 5.  相似文献   
7.
ABSTRACT: A curve number based model, Soil and Water Assessment Tool (SWAT), and a physically based model, Soil Moisture Distribution and Routing (SMDR), were applied in a headwater watershed in Pennsylvania to identify runoff generation areas, as runoff areas have been shown to be critical for phosphorus management. SWAT performed better than SMDR in simulating daily streamflows over the four‐year simulation period (Nash‐Sutcliffe coefficient: SWAT, 0.62; SMDR, 0.33). Both models varied streamflow simulations seasonally as precipitation and watershed conditions varied. However, levels of agreement between simulated and observed flows were not consistent over seasons. SMDR, a variable source area based model, needs further improvement in model formulations to simulate large peak flows as observed. SWAT simulations matched the majority of observed peak flow events. SMDR overpredicted annual flow volumes, while SWAT underpredicted the same. Neither model routes runoff over the landscape to water bodies, which is critical to surface transport of phosphorus. SMDR representation of the watershed as grids may allow targeted management of phosphorus sources. SWAT representation of fields as hydrologic response units (HRUs) does not allow such targeted management.  相似文献   
8.
9.
High genetic variability may increase metabolic efficiency and thus allows responding to environmental challenges as limits to adaptation are approached. Therefore, it has been suggested that high genetic variability contributes strongly to the fitness of an individual. Survival to high age may thus depend on high genetic variability, and genetically variable individuals may have a higher survival rate to high ages in comparison to less variable sympatric conspecifics. Such a heterozygosity × age relationship might be more readily detectable in stressful as compared to benign environments. For testing the relationship between age and heterozygosity, we genetically analyzed 71 individuals of the frog species Rana perezi from a total of seven populations at 13 allozyme loci. The age of the individuals was determined by skeletochronology. We found effects on age of both environment and allozyme heterozygosity, especially in populations with high stress regimes. A significant heterozygosity × age relationship has so far rarely been shown in natural populations. The result of our analysis suggests that more heterozygous individuals have a higher longevity and may be an important source of genetic variability of a population, likely contributing to a stabilization of the effective population size.  相似文献   
10.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号