首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   2篇
基础理论   2篇
污染及防治   3篇
社会与环境   2篇
  2017年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2003年   3篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
We evaluated the importance of floodplains for nutrient retention in two distributaries of the river Rhine (Waal and IJssel) by monitoring N and P retention in a body of water during downstream transport. We hypothesized that (i) retention of P is much larger than retention of N and (ii) nutrient retention increases with an increasing amount of the discharge flowing through floodplains (QF). The second hypothesis was tested by comparing retention between the rivers Waal (low QF) and IJssel (high QF), as well as at different discharges. Total nitrogen (TN) did not decrease significantly during downstream transport in both rivers, whereas 20 to 45% of total phosphorus (TP) disappeared during transport in the river IJssel. This difference between N and P retention-supporting the first hypothesis-was probably caused by differences in sedimentation through a much lower proportion of N adsorbed to particles than of P (2-3% of N vs. 50-70% of P). Phosphorus retention was only observed in the IJssel and not in the Waal, and absolute P retention (g P s(-1) km(-1)) in the IJssel increased with increasing QF. The second hypothesis was, nevertheless, not fully supported, because the percentage P retention (% of P load) decreased (instead of increased) with increasing QF. The percentage P retention increased with decreasing river depth and flow velocity; it seemed related to the efficiency of sediment trapping.  相似文献   
3.
Duckweed species are promising macrophytes for use in sustainable wastewater treatment due to their rapid growth, ease of harvest, and feed potential as a protein source. This paper reviews growth rates of different duckweed species on wastewater and ammonia toxicity to duckweed and summarizes insights into the mechanism of organic matter and nutrient removal. Results were gained from laboratory experiments in small, shallow, duckweed-covered semicontinuous batch systems. Growth rates on different types of wastewater vary considerably among different species. Ammonia is toxic for duckweed in both the ionized and un-ionized forms. Duckweed, however, can be used to treat wastewater containing very high total ammonia concentrations as long as certain pH levels are not exceeded. The degradation of organic material is enhanced by duckweed through both additional oxygen supply and additional surface for bacterial growth. The duckweed mat with attached bacteria and algae is, independent of the loading rates, responsible for three-quarters of the total nitrogen (N) and phosphorus (P) loss in very shallow systems. Based on our results we suggest that full-scale pilot plants with duckweed should be shallower than the range encountered in the literature. A harvesting schedule that allows doubling times of 2 to 3.5 d, maintenance of a full coverage, and plug flow conditions are recommended.  相似文献   
4.
Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of ‘Continental Europe’. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50–100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40–50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.  相似文献   
5.
用大型底栖动物和ODP系统评价珠江的有机污染   总被引:1,自引:2,他引:1  
采用大型底栖动物需氧有机体百分率ODP(oxygen demander percentage)法对广州珠江前航道、西航道和流溪河的下游段进行河流有机污染评价.结果显示:底栖动物需氧类群密度在三河段间分布确有显著性差异,并根据其ODP可以判断流溪河水质相对较好,水质级别为中国地表水环境质量标准(EQSSW)Ⅳ级,西航道和前航道水质级别都为Ⅴ级.通过测试,这一方法能成功地应用在珠江及流溪河,且该法可以较好地匹配于EQSSW五级评价系统,初步认为ODP系统可以成为一个较好的河流水质生物监测方法.图3表4参13  相似文献   
6.
Photosynthesis and growth in low light and survival under simulated winter conditions were studied in the freefloating green alga Ulva lactuca L., collected in Roskilde Fjord, Denmark during late autumn and maintained in stock in natural water. It adapts efficiently to low light by increasing chlorophyll concentration and light absorption and continues to grow at the lowest irradiance tested, 0.6 E m-2 s-1. This irradiance corresponds to minimum light requirements of deep-living marine macroalgae and phytoplankton growing under ice. The photosynthetic efficiency per unit of incident light is five-fold higher for U. lactuca grown at 1.7 E PAR m-2 s-1 as compared with 56.3 E m-2 s-1, and the efficiency per unit of light absorbed is twice as high. The maximum photosynthetic efficiency (0.051 mol C E-1 absorbed) is similar to values for shade-adapted marine phytoplankton. U. lactuca is able to survive for two months in the dark and to resume growth immediately when transferred to light. Exposure to anoxia and sulphide gradually reduces vitality, but does not affect survival over two months. Rigorous deep freezing is detrimental to survival of U. lactuca, while field samples show that more gradual, natural freezing is not. U. lactuca is not easily fitted into one of the traditional strategy concepts. U. lactuca is a very plastic species that combines rapid growth during favourable periods (opportunism) with high survival capacity in the same type of tissue during stress periods (persistence). U. lactuca occupies a niche as a free-floating form in sedimentary coastal areas that are devoid of attached algae.  相似文献   
7.
Using the drivers–pressures–state–impact–responses (DPSIR) analytical framework, local stakeholder respondents and experts were interviewed to construct and prioritize a causality network that links ecosystem state of the coastal waters of Berau (East Kalimantan, Indonesia) with societal drivers of change. Particularly on the perceived top priority drivers and pressures, consensus among respondents was considerable. The constructed network was found to be consistent with literature findings from elsewhere in SE Asia. This causality network was then confronted with a local articulation of the SRES scenarios (IPCCs Special Report on Emissions Scenarios: A1, A2, B1, B2), and four plausible trajectories of future change were deduced over a period of 20?years, until 2030. Our scenario articulations differed greatly in the projected immigration influx into the region, in local economic growth and in institutional strength of governance. Under business-as-usual conditions, it is foreseen that fisheries will continue to overexploit the resource, and inland and mangrove deforestation, as well as sediment and sewage loading of the coastal waters, will increase, leading to declines in coral and seagrass extent and depleted fisheries. Scenarios with continued immigration (~A1, A2) will probably aggravate this pattern, whereas those with reduced immigration (~B1, B2) would appear to lead to considerable improvements in the state of the coastal waters of Berau.  相似文献   
8.
We augment discussions about the Good Environmental Status of the North Sea by developing two extreme visions and assessing their societal benefits. One vision (‘Then’) assumes restoration of benthic functioning; we contend that trawling had already degraded the southern North Sea a century ago. Available information is used to speculate about benthic functioning in a relatively undisturbed southern North Sea. The second vision (‘Now’) draws on recent benthic functioning. The supply of five ecosystem services, supported by benthic functioning, is discussed. ‘Then’ offers confidence in the sustainable supply of diverse services but restoration of past function is uncertain and likely to be paired with costs, notably trawling restraints. ‘Now’ delivers known and valued services but sustained delivery is threatened by, for example, climate change. We do not advocate either vision. Our purpose is to stimulate debate about what society wants, and might receive, from the future southern North Sea.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-014-0536-5) contains supplementary material, which is available to authorized users.  相似文献   
9.

Toxicity, uptake, and transformation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] by three species of poplar tree were assessed. Poplar cuttings were grown in sealed flasks with hydrophonic solutions and exposed to various concentrations of atrazine for a period of two weeks. Toxicity effects were evaluated by monitoring transpiration and measuring poplar cutting mass. Exposure to higher atrazine concentrations resulted in decrease of biomass and transpiration accompanied by leaf chlorosis and abscission. However, poplar cuttings exposed to lower concentrations of atrazine grew well and transpired at a constant rate during experiment periods. Poplar cuttings could take up, hydrolyze, and dealkylate atrazine to less toxic metabolites. Metabolism of atrazine occurred in roots, stems, and leaves and became more complete with increased residence time in tissue. These results suggest that phytoremediation is a viable approach to removing atrazine from contaminated water and should be considered for other contaminants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号