首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
环保管理   2篇
基础理论   1篇
污染及防治   2篇
评价与监测   1篇
  2017年   1篇
  2008年   2篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Soil carbon pools and fluxes in urban ecosystems   总被引:2,自引:0,他引:2  
The transformation of landscapes from non-urban to urban land use has the potential to greatly modify soil carbon (C) pools and fluxes. For urban ecosystems, very little data exists to assess whether urbanization leads to an increase or decrease in soil C pools. We analyzed three data sets to assess the potential for urbanization to affect soil organic C. These included surface (0-10 cm) soil C data from unmanaged forests along an urban-rural gradient, data from "made" soils (1 m depth) from five different cities, and surface (0-15 cm) soil data of several land-use types in the city of Baltimore. Along the urban-rural land-use gradient, we found that soil organic matter concentration in the surface 10 cm varied significantly (P=0.001). In an analysis of variance, the urban forest stands had significantly (P=0.02) higher organic C densities (kg m(-2) to 1 m depth) than the suburban and rural stands. Our analysis of pedon data from five cities showed that the highest soil organic C densities occurred in loamy fill (28.5 kg m(-2)) with the lowest occurring in clean fill and old dredge materials (1.4 and 6.9 kg m(-2), respectively). Soil organic C densities for residential areas (15.5 +/- 1.2 kg m(-2)) were consistent across cities. A comparison of land-use types showed that low density residential and institutional land-uses had 44 and 38% higher organic C densities than the commercial land-use type, respectively. Our analysis shows that as adjacent land-use becomes more urbanized, forest soil C pools can be affected even in stands not directly disturbed by urban land development. Data from several "made" soils suggests that physical disturbances and inputs of various materials by humans can greatly alter the amount C stored in these soils.  相似文献   
2.
Carbon storage by urban soils in the United States   总被引:4,自引:0,他引:4  
We used data available from the literature and measurements from Baltimore, Maryland, to (i) assess inter-city variability of soil organic carbon (SOC) pools (1-m depth) of six cities (Atlanta, Baltimore, Boston, Chicago, Oakland, and Syracuse); (ii) calculate the net effect of urban land-use conversion on SOC pools for the same cities; (iii) use the National Land Cover Database to extrapolate total SOC pools for each of the lower 48 U.S. states; and (iv) compare these totals with aboveground totals of carbon storage by trees. Residential soils in Baltimore had SOC densities that were approximately 20 to 34% less than Moscow or Chicago. By contrast, park soils in Baltimore had more than double the SOC density of Hong Kong. Of the six cities, Atlanta and Chicago had the highest and lowest SOC densities per total area, respectively (7.83 and 5.49 kg m(-2)). On a pervious area basis, the SOC densities increased between 8.32 (Oakland) and 10.82 (Atlanta) kg m(-2). In the northeastern United States, Boston and Syracuse had 1.6-fold less SOC post- than in pre-urban development stage. By contrast, cities located in warmer and/or drier climates had slightly higher SOC pools post- than in pre-urban development stage (4 and 6% for Oakland and Chicago, respectively). For the state analysis, aboveground estimates of C density varied from a low of 0.3 (WY) to a high of 5.1 (GA) kg m(-2), while belowground estimates varied from 4.6 (NV) to 12.7 (NH) kg m(-2). The ratio of aboveground to belowground estimates of C storage varied widely with an overall ratio of 2.8. Our results suggest that urban soils have the potential to sequester large amounts of SOC, especially in residential areas where management inputs and the lack of annual soil disturbances create conditions for net increases in SOC. In addition, our analysis suggests the importance of regional variations of land-use and land-cover distributions, especially wetlands, in estimating urban SOC pools.  相似文献   
3.
Identification of reference streams and human disturbance gradients are crucial steps in assessing the effects of human disturbances on stream health. We describe a process for identifying reference stream reaches and assessing disturbance gradients using readily available, geo-referenced stream and human disturbance databases. We demonstrate the utility of this process by applying it to wadeable streams in Michigan, USA, and use it to identify which human disturbances have the greatest impact on streams. Approximately 38% of cold-water and 16% of warm-water streams in Michigan were identified as being in least-disturbed condition. Conversely, approximately 3% of cold-water and 4% of warm-water streams were moderately to severely disturbed by landscape human disturbances. Anthropogenic disturbances that had the greatest impact on moderately to severely disturbed streams were nutrient loading and percent urban land use within network watersheds. Our process for assessing stream health represents a significant advantage over other routinely used methods. It uses inter-confluence stream reaches as an assessment unit, permits the evaluation of stream health across large regions, and yields an overall disturbance index that is a weighted sum of multiple disturbance factors. The robustness of our approach is linked to the scale of disturbances that affect a stream; it will be less robust for identifying less degraded or reference streams with localized human disturbances. With improved availability of high-resolution disturbance datasets, this approach will provide a more complete picture of reference stream reaches and factors contributing to degradation of stream health.  相似文献   
4.
We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0-10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of plots exceeded United States Environmental Protection Agency screening guidelines for Pb. In a principal component analysis, the first component corresponded to Co, Cr, and Fe, which are constituents of local mafic rocks. The second component corresponded to Cu, Pb, and Zn which were significantly higher within than beyond a 100 m buffer of the major roads within the city; furthermore, Pb and Zn were higher in older residential lots.  相似文献   
5.
Managing Recreational Trail Environments for Mountain Bike User Preferences   总被引:1,自引:0,他引:1  
N  = 406), highlight some important issues concerning the design and management of wildland recreation environments that are primarily used for mountain biking. For example, bikers were found to significantly prefer water bars above all other tested soil erosion management techniques; trail erosion factors, including the presence of rocks, roots, and gullies, all added to biking experiences on average; trail design factors, such as the presence of turns, bumps, jumps, and obstacles, all added to biking experiences in general. These findings were used to address questions that resource managers should consider when striving to effectively manage wildland recreation areas primarily used for mountain biking.  相似文献   
6.
This paper presents a study of the waves generated by a solid block landslide moving along a horizontal boundary. The landslide was controlled using a mechanical system in a series of physical experiments, and laser-induced fluorescence measurements resolved both spatial and temporal variations in the free surface elevation. During its constant-velocity motion, the landslide transferred energy into ‘trapped’ offshore-propagating waves within a narrow frequency band. The wave trapping is demonstrated by investigating the wave dispersion characteristics using a two-dimensional Fourier Transform. The first of the trailing waves broke at Froude numbers greater than or equal to 0.625. The parametric dependence of the largest-amplitude waves and the potential energy within the wave field are discussed. The experimental results were compared to the predictions of an incompressible Navier–Stokes solver with and without turbulence models. The numerical model under-predicted the measured wave amplitudes, although it accurately predicted the measured wave phasing. The turbulent model more accurately predicted the shapes of the trailing waves. Both experimental and numerical results confirmed that investigations into wave generation by submerged objects moving at constant velocity should also consider the initial acceleration of the object, as this affects the overall evolution of the wave field. The applicability of the horizontal-boundary results to more realistic field scenarios is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号