首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   0篇
安全科学   1篇
废物处理   1篇
环保管理   13篇
综合类   9篇
基础理论   22篇
污染及防治   39篇
评价与监测   14篇
社会与环境   7篇
  2012年   13篇
  2011年   16篇
  2010年   1篇
  2009年   1篇
  2008年   14篇
  2007年   10篇
  2006年   10篇
  2005年   3篇
  2004年   6篇
  2003年   5篇
  2002年   5篇
  2001年   11篇
  2000年   1篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
1.
Parametric statistical approaches, correlations and multiple linear regressions were used to develop models for the interpretation of hydrogeochemical parameters in the Western part of Delhi state, India. The hydrogeochemical parameters indicated that the groundwater quality is not safe for consumption. The water is moderately saline and the salinity level is increasing over time. There is also the problem of nitrate pollution. The correlation between electrical conductivity (EC) and other water quality parameters except potassium (K(+)), nitrate (NO(3)(-)) and bicarbonate (HCO(3)(-)) is significantly positive and Ca(++)+ Mg(++)/Na(+)+ K(+) is significantly negative. In predicting EC, the multiple R(2) values of 0.996 and 0.985 indicate that 99.6% and 98.5% variability in the observed EC could be ascribed to the combined effect of Na(+), HCO(3)(-), Cl(-), SO(4)(--), NO(3)(-) and Ca(++)+ Mg(++) for the year of 2005 and 2006 respectively. Out of 99.6% of the variability in EC in 2005, 51.2% was due to Cl(-) alone, and 8.5%, 12.5%, 6.1%, 14.7% and 6.7% were due to Na(+), HCO(3)(-), SO(4)(--), NO(3)(-) and Ca(++) + Mg(++). Similarly in 2006, out of 98.5% of the variability in EC, 48.5% was due to Cl(-) alone, and 10.4%, 12.7%, 5.3%, 17.2% and 4.4% were due to Na(+), HCO(3)(-), SO(4)(--), NO(3)(-) and Ca(++)+ Mg(++). The analysis shows that a good correlation exists between EC, Cl(-) and SO(4)(--) either individually or in combination with other ions and the multiple regression models can predict EC at 5% level of significance.  相似文献   
2.
3.
Thirty-day-old seedlings of rice plants (IR-20 variety) from the nursery were transplanted into experimental plots and after 52 days were sprayed with phosphamidon (Dimecron 85% EC) at two dose-rates (0.38 kg a.i. ha(-1) and 0.76 kg a.i. ha(-1)). Residues of phosphamidon in the plant, soil and water were analysed by GLC, at various time intervals, and were found to decrease steadily up to 15 days. A second application of the pesticide was made on day 113 and grains harvested on day 138. The residue level in the plants was 0.12 microg g(-1) and in the grains 0.04 microg g(-1) with the high dose. This is slightly below the EPA prescribed tolerance level of 0.05 microg g(-1). The residues in both soil and water were very low, 24 h after spraying.  相似文献   
4.
三峡水库消落区生态环境保护与调控对策研究   总被引:1,自引:2,他引:1  
三峡水库建成后,由于水库调度引起库水位周期性的涨落,在库区两岸形成周期性变化的水陆交错区域即消落区。消落区是水、陆生态系统的交错地带,具有生态脆弱性、变化周期性和人类活动频繁性等特点。随着三峡工程逐步投入使用,人类活动对消落区的影响也逐渐增加,并且消落区自身存在生态脆弱性,如果不采取有效措施,它将影响三峡工程的正常运行和整个库区的可持续发展。因此,针对消落区的水、土环境变化特点,分析了消落区土壤与水环境的相互影响,提出了利用生物缓冲带、复合生态、坡地农业、流域生态学、人工湿地及生态河堤等技术来对消落区生态环境进行保护与调控的措施。  相似文献   
5.
The purpose of this study was to evaluate the effect of traffic volume on ambient black carbon (BC) concentration in an inner-city neighborhood "hot spot" while accounting for modifying effects of weather and time. Continuous monitoring was conducted for 12 months at the Baltimore Traffic Study site surrounded by major urban streets that together carry over 150,000 vehicles per day. Outdoor BC concentration was measured with an Aethalometer; vehicles were counted pneumatically on two nearby streets. Meteorological data were also obtained. Missing data were imputed and all data were normalized to a 5-min observational interval (n = 105,120). Time-series modeling accounted for autoregressively (AR) correlated errors. This study found that outdoor BC was positively correlated at a statistically significant level with neighborhood-level vehicle counts, which contributed at a rate of 66 +/- 10 (SE) ng/m3 per 100 vehicles every 5 min. Winds from the SW-S-SE quarter were associated with the greatest increases in BC (376-612 ng/m3). These winds would have entrained BC from Baltimore's densely trafficked central business district, as well as a nearby interstate highway. The strong influence of wind direction implicates atmospheric transport processes in determining BC exposure. Dew point, mixing height, wind speed, season, and workday were also statistically significant predictors. Background exposure to BC was estimated to be 905 ng/m3. The optimal, statistically significant representation of BC's autocorrelation was AR([1:6]) x 288 x 2016, where the short-term AR factor (lags 1-6) indicated that BC concentrations are correlated for up to 30 min, and the AR factors for lags 288 and 2016 indicate longer-term autocorrelations at diurnal and weekly cycles, respectively. It was concluded that local exposure to BC from mobile sources is substantially modified by meteorological and temporal conditions, including atmospheric transport processes. BC concentration also demonstrates statistically significant autocorrelation at several time scales.  相似文献   
6.
Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.  相似文献   
7.
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847 ng L−1 and 674-1383 ng L−1, respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment.  相似文献   
8.
By 19%, standard remediation techniques had significantly reduced the concentration of nitrate nitrogen (NO3- -N) in local ground water at the site of a 1989 anhydrous ammonia spill, but NO3- -N concentrations in portions of the site still exceeded the public drinking water standard. Our objective was to determine whether local soil and ground water quality could be improved with alfalfa (Medicago sativa L.). A 3-yr study was conducted in replicated plots (24 by 30 m) located hydrologically upgradient of the ground water under the spill site. Three alfalfa entries ['Agate', Ineffective Agate (a non-N2-fixing elite germplasm similar to Agate), and MWNC-4 (an experimental germplasm)] were seeded in the spring of 1996. Corn (Zea mays L.) or wheat (Triticum aestivum L.) was seeded adjacent to the alfalfa each year. Crops were irrigated with N-containing ground water to meet water demand. During the 3-yr period, about 540 kg of inorganic N was removed from the aquifer through irrigation of 4.9 million L water. Cumulative N removal from the site over 3 yr was 972 kg N ha(-1) in Ineffective Agate alfalfa hay, compared with 287 kg N ha(-1) for the annual cereal grain. Soil solution NO3- concentrations were reduced to low and stable levels by alfalfa, but were more variable under the annual crops. Ground water quality improved, as evidenced by irrigation water N concentration. We do not know how much N was removed by the N2-fixing alfalfas, but it appears that either fixing or non-N2-fixing alfalfa will effectively remove inorganic N from N-affected sites.  相似文献   
9.
Environmental exposure to arsenic (As) in terms of public health is receiving increasing attention worldwide following cases of mass contamination in different parts of the world. However, there is a scarcity of data available on As geochemistry in Brazilian territory, despite the known occurrence of As in some of the more severely polluted areas of Brazil. The purpose of this paper is to discuss existing data on As distribution in Brazil based on recent investigations in three contaminated areas as well as results from the literature. To date, integrated studies on environmental and anthropogenic sources of As contamination have been carried out only in three areas in Brazil: (1) the Southeastern region, known as the Iron Quadrangle, where As was released into the drainage systems, soils and atmosphere as a result of gold mining; (2) the Ribeira Valley, where As occurs in Pb-Zn mine wastes and naturally in As-rich rocks and soils; (3) the Amazon region, including the Santana area, where As is associated with manganese ores mined over the last 50 years. Toxicological studies revealed that the populations were not exposed to elevated levels of As, with the As concentrations in surface water in these areas rarely exceeding 10 microg/L. Deep weathering of bedrocks along with formation of Fe/Al-enriched soils and sediments function as a chemical barrier that prevents the release of As into the water. In addition, the tropical climate results in high rates of precipitation in the northern and southeastern regions and, hence, the As contents of drinking water is diluted. Severe cases of human As exposure related to non-point pollution sources have not been reported in Brazil. However, increasing awareness of the adverse health effects of As will eventually lead to a more complete picture of the distribution of As in Brazil.  相似文献   
10.
To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号