首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2011年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The past decade has seen tremendous advances in producing nanofibers and nanowires from a variety of materials for applications in sensors, photovoltaic devices and regenerative medicine. Nano and sub-micron fibers produced from a conventional electrospinning process are relatively inexpensive to produce but result in entangled and randomly oriented fibers. In this research, we have utilized a modified form of the electrospinning process, wherein polymeric fibers of Poly-caprolactone (PCL) are deposited in controlled pattern orientations by the ‘near-field electrospinning’ process. The process variables are interdependent and greatly influence the final deposition and diameters of the fibers. Response Surface Methodology (RSM) was used to obtain a quantitative and systematic understanding of the near-field deposition process and its relationship with the process parameters. A response surface function was empirically determined with fiber diameter as the observed response and the deposition parameters as the variables. Fibers of diameter ranging for 500–1500 nm were produced with a reasonable R2 value of 0.74, which indicates approximately seventy five percent of the variation in the response variable can be explained by the explanatory variables and the rest by the inherent process variability.  相似文献   
2.
CAD/CAM-based layered manufacturing and additive manufacturing techniques of metals have found applications in near-net-shape fabrication of complex shaped parts with tailored mechanical properties for several applications. Especially with the onset of newer processes such as electron beam melting (EBM) and direct metal laser sintering (DMLS), revolutionary advances may be achieved in material substitution in the medical implant industry. These processes must be suitably developed and tested for the production of medical grade substitutions. In this article, we discuss a design process for creating periodic cellular structures specifically targeted for biomedical applications. Electron beam melting is used to fabricate the parts. Evaluation of the mechanical properties is performed and compared with design parameters. Compression tests of the samples show effective stiffness values ranging from 0.57 (±0.05) to 2.92 (±0.17) GPa and compressive strength values of 7.28 (±0.93) to 163.02 (±11.98) MPa. Substituting these values for simulation of biomechanical performance of patient-specific implants illustrates the compatibility and matched functional performance characteristics of highly porous parts at a safety factor of 5 and an effective reduction in weight. These developments are unique for the construction of maxillofacial and craniofacial implants. The novel design strategy also lends itself very well to metal additive manufacturing technologies. Implants designed and fabricated with this design strategy and manufacturing process would have mechanical properties equivalent to the part they replace and restore better function and esthetics as against the currently used methods of reconstruction. Suitable examples of a titanium porous cranioplasty plate and a sandwich structure are illustrated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号