首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
环保管理   3篇
综合类   2篇
基础理论   7篇
污染及防治   2篇
社会与环境   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  1978年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
This study aimed to investigate the wear of certain coated drills when drilling carbon fiber reinforced composites (CFRP). Three different drills were used in the drilling experiments: uncoated, diamond coated and AlTiN coated carbide (WC–Co) drills. The tool wear in CFRP machining was quite different from that in conventional metal machining. The primary wear type was a dulling or blunting of the cutting edge, which has been referred to as edge rounding wear or edge recession. In this paper, a hypothesis has been developed to explain the edge rounding wear in CFRP machining. Due to the fracture-based chip formation of CFRP, there is lack of the work material stagnation zone in front of the cutting edge, which normally prevents the edge wear in metal machining. Series of wear lead to rapid dulling of the cutting edge. The resistance to edge rounding wear on the coated as well as uncoated drills has been investigated. The diamond coating significantly reduces the edge rounding wear. However, AlTiN coated drills showed no visible improvement over the uncoated carbide drill, despite of their high hardness, thus not protecting the drill. The wear mechanisms of the uncoated carbide drill and coatings are discussed. It is believed that the 2-body and 3-body abrasive wear fail to explain the observed tool wear in CFRP drilling. However, the wear of the coatings and uncoated carbide substrate from tribo-meter tests correlated well with the tool wear in the CFRP drilling. Therefore, the tribo-meter test can be used to screen the prospective tool materials before carrying drilling experiment.  相似文献   
2.
One approach for performing uncertainty assessment in flood inundation modeling is to use an ensemble of models with different conceptualizations, parameters, and initial and boundary conditions that capture the factors contributing to uncertainty. However, the high computational expense of many hydraulic models renders their use impractical for ensemble forecasting. To address this challenge, we developed a rating curve library method for flood inundation forecasting. This method involves pre‐running a hydraulic model using multiple inflows and extracting rating curves, which prescribe a relation between streamflow and stage at various cross sections along a river reach. For a given streamflow, flood stage at each cross section is interpolated from the pre‐computed rating curve library to delineate flood inundation depths and extents at a lower computational cost. In this article, we describe the workflow for our rating curve library method and the Rating Curve based Automatic Flood Forecasting (RCAFF) software that automates this workflow. We also investigate the feasibility of using this method to transform ensemble streamflow forecasts into local, probabilistic flood inundation delineations for the Onion and Shoal Creeks in Austin, Texas. While our results show water surface elevations from RCAFF are comparable to those from the hydraulic models, the ensemble streamflow forecasts used as inputs to RCAFF are the largest source of uncertainty in predicting observed floods.  相似文献   
3.
Community-based collaborative groups involved in public natural resource management are assuming greater roles in planning, project implementation, and monitoring. This entails the capacity of collaborative groups to develop and sustain new organizational structures, processes, and strategies, yet there is a lack of understanding what constitutes collaborative capacity. In this paper, we present a framework for assessing collaborative capacities associated with community-based public forest management in the US. The framework is inductively derived from case study research and observations of 30 federal forest-related collaborative efforts. Categories were cross-referenced with literature on collaboration across a variety of contexts. The framework focuses on six arenas of collaborative action: (1) organizing, (2) learning, (3) deciding, (4) acting, (5) evaluating, and (6) legitimizing. Within each arena are capacities expressed through three levels of social agency: individuals, the collaborative group itself, and participating or external organizations. The framework provides a language and set of organizing principles for understanding and assessing collaborative capacity in the context of community-based public forest management. The framework allows groups to assess what capacities they already have and what more is needed. It also provides a way for organizations supporting collaboratives to target investments in building and sustaining their collaborative capacities. The framework can be used by researchers as a set of independent variables against which to measure collaborative outcomes across a large population of collaborative efforts.  相似文献   
4.
5.
Increases in the extent and severity of spruce budworm (Choristoneura fumiferana Clem.) outbreaks over the last century are thought to be the result of changes in forest structure due to forest management. A corollary of this hypothesis is that manipulations of forest structure and composition can be used to reduce future forest vulnerability. However, to what extent historical forest management has influenced current spatial patterns of spruce budworm host species is unknown. To identify landscape-scale spatial legacies of forest management in patterns of spruce budworm host species (i.e., Abies balsamea and Picea spp.), we analyzed remotely sensed forest data from the Border Lakes landscape of northern Minnesota and northwestern Ontario. Our study area contains three regions with different management histories: (1) fine-scale logging patterns in Minnesota, (2) coarse-scale logging patterns in Ontario, and (3) very limited logging history in the Boundary Waters Canoe Area and adjacent Quetico Provincial Park. We analyzed forest basal-area data using wavelets and null models to identify: (1) at which scales forest basal area is structured, (2) where those scales of pattern are significantly present, and (3) whether regions of local significance correspond to regional boundaries that separate the study area. Results indicate that spatial patterns in host basal area are created by nonstationary processes and that these processes are further constrained by lakes and wetlands. Wavelet analysis combined with significance testing revealed a bimodal distribution of scale-specific wavelet variance and separate zones of host species basal area that partially correspond with regional boundaries, particularly between Minnesota and the Wilderness region. This research represents one of the first comparisons of forest spatial structure in this region across an international border and presents a novel method of two-dimensional wavelet analysis that can be used to identify significant scale-specific structure in spatial data.  相似文献   
6.
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and incorporate realistic fire characteristics (shapes, distributions, and effects) that can vary within and between fire events. We demonstrate the capabilities of the new extensions using two case study examples with very different ecosystem characteristics: a boreal forest system from central Labrador, Canada, and a mixed conifer system from the Sierra Nevada Mountains (California, USA). In Labrador, comparison between the more complex dynamic fire extension and a classic fire simulator based on a simple fire size distribution showed little difference in terms of mean fire rotation and potential severity, but cumulative burn patterns created by the dynamic fire extension were more heterogeneous due to feedback between fuel types and fire behavior. Simulations in the Sierra Nevada indicated that burn patterns were responsive to topographic features, fuel types, and an extreme weather scenario, although the magnitude of responses depended on elevation. In both study areas, simulated fire size and resulting fire rotation intervals were moderately sensitive to parameters controlling the curvilinear response between fire spread and weather, as well as to the assumptions underlying the correlation between weather conditions and fire duration. Potential fire severity was more variable within the Sierra Nevada landscape and also was more sensitive to the correlation between weather conditions and fire duration. The fire modeling approach described here should be applicable to questions related to climate change and disturbance interactions, particularly within locations characterized by steep topography, where temporally or spatially dynamic vegetation significantly influences spread rates, where fire severity is variable, and where multiple disturbance types of varying severities are common.  相似文献   
7.
Darko G  Akoto O  Oppong C 《Chemosphere》2008,72(1):21-24
Some organochlorine pesticide residues in tilapia fish (Tilapiazilli), sediment and water samples from Lake Bosomtwi (the largest natural lake in Ghana) were determined to find out the extent of pesticide contamination and accumulation in the lake. The extracted residues were analyzed on a micro-capillary gas chromatograph equipped with electron capture detector. DDE (p,p'-1,1-dichloro-2,2-bis-(4-chlorophenyl)ethylene) was the predominant residue in all the samples analyzed; detected in 82% of water samples, 98% of sediment samples and 58% of fish samples at concentrations of 0.061+/-0.03 ng g(-1), 8.342+/-2.96 ng g(-1) and 5.232+/-1.30 ng g(-1), respectively. DDT (p,p'-1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane) was detected in 78% at a mean concentration 0.012+/-0.62 ng g(-1) of water samples analyzed. The mean concentrations of DDT in sediments and fish were 4.41+/-1.54 ng g(-1) and 3.645+/-1.81 ng g(-1), respectively. The detection of lower levels of DDT than its metabolite, DDE, in the samples implies that the presence of these contaminants in the lake is as result of past usage of the pesticides.  相似文献   
8.
Coffee is an important commodity crop in Zimbabwe and many other African countries in terms of its contribution to local and national economies. Coffee production in terms of productivity and quality face severe constraints due to climate change. A study was therefore carried out to understand and quantify the potential impact of climate change on the coffee sector in Zimbabwe using a bioclimatic modelling approach. Current climatically suitable areas were identified and compared with those areas identified to be climatically suitable under projected 2050 climatic conditions. The projected climatic conditions were obtained from climate predictions of two models: CCSM4 model and HadGEM2 model. Coffee production was found to be mostly sensitive to precipitation factors as these were the most important in determining climatic suitability of coffee production in Zimbabwe. The modelling showed that current coffee suitability varies spatially between the four coffee producing districts in Zimbabwe. Chipinge district has the largest area climatically suitable for coffee production followed by Chimanimani district with Mutare district having the smallest. The modelling predicted that there will be a spatial and quantitative change in climatic suitability for coffee production in Zimbabwe by 2050. The greatest changes are projected for Mutare district where over three quarters according to the CCSM4 model and the entire district according to the HadGEM2 model will turn marginal for coffee production. A westward shift in climatic suitability of coffee was observed for Chipinge and Chimanimani district. The models predicted a loss of between 30,000 ha (CCSM4) and 50,000 ha (HadGEM2) in areas climatically suitable for coffee production by 2050 in Zimbabwe. These changes are likely to be driven by changes in the distribution of precipitation received in the coffee areas. The study presents possible adaptation measures that can be adopted by the coffee sector in Zimbabwe and the region to maintain coffee productivity under a changing climate.  相似文献   
9.
Organophosphate, dichlorvos (2,2-dichlorovinyldimethylphosphate, DDVP), and diazinon (DZN) as well as carbamates are currently found in contaminated water, dust, soil, agricultural waste, and elsewhere in the environment, and can be harmful after accidental or deliberate exposure. Intoxication by these compounds causes a generalized cholinergic crisis due to the inhibition of acetylcholinesterase (AChE), whose major physiological role in mammalian tissues is in nervous transmission. The half-maximal inhibitory concentration (IC50) was found to be higher for carbaryl than DDVP and DZN, about 3–4 times in liver and about 4–6 times in muscles. The half time (t 1/2) of inhibition (8?µmol?L?1 DDVP or DZN; 40?µmol?L?1 carbaryl) ranged between 4 and 16?min and decreased as follows: pig?>?cattle?>?sheep for liver tissue, and cattle?>?sheep?>?pig for muscle. Rate constants of inhibition (k i) ranged between 43?×?10?3 and 168?×?10?3?min?1 for liver and from 46?×?10?3 to 115?×?10?3?min?1 for muscles. Very little residual AChE activity (<6.1%) was seen in liver, but more was seen in muscle (<17%).  相似文献   
10.
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号