首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   1篇
基础理论   5篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 46 毫秒
1
1.
The productive North Pacific waters of the Gulf of Alaska, Aleutian Islands and Bering Sea support a high density of fish-eating “Resident” type killer whales (Orcinus orca), which overlap in distribution with commercial fisheries, producing both direct and indirect interactions. To provide a spatial context for these interactions, we analyzed a 10-year dataset of 3,058 whale photo-identifications from 331 encounters within a large (linear ~4,000 km) coastal study area to investigate the ranging and social patterns of 532 individually identifiable whales photographed in more than one encounter. Although capable of large-scale movements (maximum 1,443 km), we documented ranges generally <200 km, with high site fidelity across summer sampling intervals and also re-sightings during a winter survey. Bayesian analysis of pair-wise associations identified four defined clusters, likely representing groupings of stable matrilines, with distinct ranging patterns, that combined to form a large network of associated whales that ranged across most of the study area. This provides evidence of structure within the Alaska stock of Resident killer whales, important for evaluating ecosystem and fisheries impacts. This network included whales known to depredate groundfish from longline fisheries, and we suggest that such large-scale connectivity has facilitated the spread of depredation.  相似文献   
2.
Continuous-time correlated random walk model for animal telemetry data   总被引:2,自引:0,他引:2  
Johnson DS  London JM  Lea MA  Durban JW 《Ecology》2008,89(5):1208-1215
We propose a continuous-time version of the correlated random walk model for animal telemetry data. The continuous-time formulation allows data that have been nonuniformly collected over time to be modeled without subsampling, interpolation, or aggregation to obtain a set of locations uniformly spaced in time. The model is derived from a continuous-time Ornstein-Uhlenbeck velocity process that is integrated to form a location process. The continuous-time model was placed into a state-space framework to allow parameter estimation and location predictions from observed animal locations. Two previously unpublished marine mammal telemetry data sets were analyzed to illustrate use of the model, by-products available from the analysis, and different modifications which are possible. A harbor seal data set was analyzed with a model that incorporates the proportion of each hour spent on land. Also, a northern fur seal pup data set was analyzed with a random drift component to account for directed travel and ocean currents.  相似文献   
3.
Killer whale (Orcinus orca Linnaeus, 1758) abundance in the North Pacific is known only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line-transect ship surveys were conducted in July and August of 2001–2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional and Multiple Covariate Distance Sampling methods were used to estimate the abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two data sets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting, and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups. ‘Resident’-type (fish-eating) killer whales were more abundant than the ‘transient’-type (mammal-eating). Abundance estimates of resident killer whales (991 [95% CI = 379–2,585] [IGS] and 1,587 [95% CI = 608–4,140] [PEGS]), were at least four times greater than those of the transient killer whales (200 [95% CI = 81–488] [IGS] and 251 [95% CI = 97–644] whales [PEGS]). The IGS estimate of abundance is preferred for resident killer whales because the estimate based on PEGS data may show an upward bias. The PEGS estimate of abundance is likely more accurate for transients. Residents were most abundant near Kodiak Island in the northern Gulf of Alaska, around Umnak and Unalaska Islands in the eastern Aleutians, and in Seguam Pass in the central Aleutians. This ecotype was not observed between 156 and 164°W, south of the Alaska Peninsula. In contrast, transient killer whale sightings were found at higher densities south of the Alaska Peninsula between the Shumagin Islands and the eastern Aleutians. Only two sightings of ‘offshore’-type killer whales were recorded during the surveys, one northeast of Unalaska Island and the other south of Kodiak Island. These are the first estimates of abundance of killer whale ecotypes in the Aleutian Islands and Alaska Peninsula area and provide a baseline for quantifying the role of these top predators in their ecosystem. Electronic Supplementary Material  Supplementary material is available in the online version of this article at and is accessible for authorized users.
Alexandre N. ZerbiniEmail:
  相似文献   
4.
We used photographic mark-recapture methods to estimate the number of mammal-eating “transient” killer whales using the coastal waters from the central Gulf of Alaska to the central Aleutian Islands, around breeding rookeries of endangered Steller sea lions. We identified 154 individual killer whales from 6,489 photographs collected between July 2001 and August 2003. A Bayesian mixture model estimated seven distinct clusters (95% probability interval = 7–10) of individuals that were differentially covered by 14 boat-based surveys exhibiting varying degrees of association in space and time. Markov Chain Monte Carlo methods were used to sample identification probabilities across the distribution of clusters to estimate a total of 345 identified and undetected whales (95% probability interval = 255–487). Estimates of covariance between surveys, in terms of their coverage of these clusters, indicated spatial population structure and seasonal movements from these near-shore waters, suggesting spatial and temporal variation in the predation pressure on coastal marine mammals.  相似文献   
5.
Facial and vocal expressions of emotion have been found in a number of social mammal species and are thought to have evolved to aid social communication. There has been much debate about whether such signals are culturally inherited or are truly biologically innate. Evidence for the innateness of such signals can come from cross-cultural studies. Previous studies have identified a vocalisation (the V4 or ‘excitement’ call) associated with high arousal behaviours in a population of killer whales in British Columbia, Canada. In this study, we compared recordings from three different socially and reproductively isolated ecotypes of killer whales, including five vocal clans of one ecotype, each clan having discrete culturally transmitted vocal traditions. The V4 call was found in recordings of each ecotype and each vocal clan. Nine independent observers reproduced our classification of the V4 call from each population with high inter-observer agreement. Our results suggest the V4 call may be universal in Pacific killer whale populations and that transmission of this call is independent of cultural tradition or ecotype. We argue that such universality is more consistent with an innate vocalisation than one acquired through social learning and may be linked to its apparent function of motivational expression.  相似文献   
6.
Identifying demographic changes is important for understanding population dynamics. However, this requires long-term studies of definable populations of distinct individuals, which can be particularly challenging when studying mobile cetaceans in the marine environment. We collected photo-identification data from 19 years (1992-2010) to assess the dynamics of a population of bottlenose dolphins (Tursiops truncatus) restricted to the shallow (<7 m) waters of Little Bahama Bank, northern Bahamas. This population was known to range beyond our study area, so we adopted a Bayesian mixture modeling approach to mark-recapture to identify clusters of individuals that used the area to different extents, and we specifically estimated trends in survival, recruitment, and abundance of a "resident" population with high probabilities of identification. There was a high probability (p= 0.97) of a long-term decrease in the size of this resident population from a maximum of 47 dolphins (95% highest posterior density intervals, HPDI = 29-61) in 1996 to a minimum of just 24 dolphins (95% HPDI = 14-37) in 2009, a decline of 49% (95% HPDI = approximately 5% to approximately 75%). This was driven by low per capita recruitment (average approximately 0.02) that could not compensate for relatively low apparent survival rates (average approximately 0.94). Notably, there was a significant increase in apparent mortality (approximately 5 apparent mortalities vs. approximately 2 on average) in 1999 when two intense hurricanes passed over the study area, with a high probability (p = 0.83) of a drop below the average survival probability (approximately 0.91 in 1999; approximately 0.94, on average). As such, our mark-recapture approach enabled us to make useful inference about local dynamics within an open population of bottlenose dolphins; this should be applicable to other studies challenged by sampling highly mobile individuals with heterogeneous space use.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号