首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
废物处理   7篇
基础理论   1篇
污染及防治   9篇
  2023年   2篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol (o-CP) in supercritical water (SCW) were studied in this paper under the conditions of 450 degrees C and 25 MPa. Experimental results indicated that the dechlorination of o-CP can be accelerated significantly by all alkalis investigated. The dechlorination of o-CP proceeded mainly via two pathways: hydrodechlorination and hydrolysis. Both of the two pathways can be promoted by alkalis, and the dechlorination of o-CP can be accelerated by both the cations and hydroxide ion dissociated from alkalis. The overall dechlorination of o-CP can be accelerated by cations via promoting the hydrodechlorination pathway, while, hydroxide ion via promoting the hydrolysis pathway. In addition, the hydrodechlorination can be accelerated faster by sodium alkalis than that by potassium ones, while, the hydrolysis can be promoted faster by potassium alkalis. This difference may be caused by the different charge density between potassium ion and sodium ion, and the different solubility and dissociation constant between potassium alkalis and sodium alkalis in SCW. Dechlorination of o-CP with addition of alkalis prior to supercritical water oxidation (SCWO) process not only can avoid the reactor corrosion caused by the generated hydrochloric acid in direct SCWO of o-CP, but also can reduce the formation of toxic chlorinated byproducts compared with direct SCWO process or SCWO of o-CP with addition of alkali.  相似文献   
2.
Waste management contributes to renewable energy such as biodiesel production from processes of various types of biomass including vegetable oils, animal fats, and waste of edible oil. Successful waste management effort is influenced by people concern about benefit of waste management including for renewable energy from biomass. It involves their understanding initiated by literacy on biomass energy. To help increase literacy on waste recycle and biomass energy technology, we study readability of online information regarding biomass energy in Indonesian language (Bahasa Indonesia). Indonesia is considered as one of biomass-rich country with a little utilization for energy. The readability is studied by combining two approaches: measurement by readability standard and survey on readability confirming measurement by the standard. This study focuses on the confirmation survey readability standard measured on biomass online information in Indonesian language. In the survey, 19 online text materials were read by respondents and they were asked to give their impression whether the texts are easy or difficult to understand. From this study, what factors influence understandability of text information are shown. The results could be a guidance for preparing text information to raise people concern on waste recycle and renewable energy in general.  相似文献   
3.
As a groundwater contaminant, 1,4-dioxane is of considerable concern because of its toxicity, refractory nature to degradation, and rapid migration within an aquifer. Although landfill leachate has been reported to contain significant levels of 1,4-dioxane, the origin of 1,4-dioxane in leachate has not been clarified until now. In this study, the origins of 1,4-dioxane in landfill leachate were investigated at 38 landfill sites and three incineration plants in Japan. Extremely high levels of 1,4-dioxane 89 and 340 microg l(-1), were detected in leachate from two of the landfill sites sampled. Assessments of leachate and measurement of 1,4-dioxane in incineration residues revealed the most likely source of 1,4-dioxane in the leachate to be the fly ash produced by municipal solid waste incinerators. Effective removal of 1,4-dioxane in leachate from fly ash was achieved using heating dechlorination systems. Rapid leaching of 1,4-dioxane observed from fly ash in a sequential batch extraction indicated that the incorporation of a waste washing process could also be effective for the removal of 1,4-dioxane in fly ash.  相似文献   
4.
Wastewater from clinical institutions contains a considerable amount of toxic substances. Among the toxic substances, antineoplastics may induce carcinogenesis, teratogenesis, and the emergence of mutant microorganisms in the environment. Although the incineration or chemical treatments of disposed antineoplastics are recommended, a high energy during incineration and a careful quality control during chemical treatment are required. In this study, we determined the conditions for the electrolytic treatment of an antineoplastic, epirubicin hydrochloride (EH), using two platinum electrodes with a constant current of 100 mA. We analyzed the cytotoxicity, mutagenicity and antibacterial activity of electrolyzed EH and compared them with those of unelectrolyzed EH. Nearly 100% cytotoxicity, mutagenicity and antibacterial activity were eliminated and HPLC did not detect an EH molecule, in the case of electrolysis for 6 h. We also examined the biological cytotoxicities of electrolyzed irinotecan hydrochloride, vincristine sulfate, mitomycin C, paclitaxel, methotrexate and cisplatin, and found that 72.1-99.999% toxicity was eliminated by electrolysis under the same conditions. The biological toxicity of a mixture of these drugs was determined to be decreased by approximately 99% by electrolysis under the same conditions.  相似文献   
5.
Journal of Material Cycles and Waste Management - Owing to Minamata Convention on mercury, the final disposal of mercury in environmentally safe manners will be required. Mercury disposal in...  相似文献   
6.
Atmospheric mercury emissions have attracted great attention owing to adverse impact of mercury on human health and the ecosystem. Although waste combustion is one of major anthropogenic sources, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated atmospheric emissions of speciated mercury from the combustions of municipal solid wastes (MSW), sewage treatment sludge (STS), STS with waste plastics, industrial waste mixtures (IWM), waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form at the inlet side of air pollution control devices in all combustion cases. Its concentration was 2.0–70.6 times larger than elemental mercury concentration. In particular, MSW, STS, and IWM combustions emitted higher concentration of reactive gaseous mercury. Concentrations of both gaseous mercury species varied greatly for all waste combustions excluding woody waste. Variation coefficients of measured data were nearly equal to or more than 1.0. Emission factors of gaseous elemental mercury, reactive gaseous mercury, and total mercury were calculated using continuous monitoring data. Total mercury emission factors are 0.30 g-Hg/Mg for MSW combustion, 0.21 g-Hg/Mg for STS combustion, 0.077 g-Hg/Mg for STS with waste plastics, 0.724 g-Hg/Mg for industrial waste mixtures, 0.028 g-Hg/Mg for waste plastic combustion, and 0.0026 g-Hg/Mg for woody waste combustion. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.

Implications Although waste combustion is one of major anthropogenic sources of atmospheric mercury emission, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated speciated mercury emissions from the combustions of municipal solid wastes, sewage treatment sludge with/without waste plastics, industrial waste mixtures, waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form in all combustion cases and its concentration in the gas had large fluctuation. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation.  相似文献   
7.
8.
In order to discuss the dry deposition fluxes of atmospheric fixed nitrogen species, observations of aerosol chemistry including nitrate (NO3?) and ammonium (NH4+) were conducted at two islands, Rishiri Island and Sado Island, over the Sea of Japan. Although the atmospheric concentrations of particulate NH4+–N showed higher values than those of particulate NO3?–N at both sites, the dry deposition fluxes of the particulate NO3?–N were estimated to be higher than those of the particulate NH4+–N. This was caused by the difference of particle sizes between the particulate NO3? and NH4+; NH4+ was almost totally contained in fine particles (d < 2.5 μm) with smaller deposition velocity, whereas NO3? was mainly contained in coarse particles (d > 2.5 μm) with greater deposition velocity. Fine mode NO3? was strongly associated with fine mode sea-salt and mineral particles, of which higher concentrations shifted the size of particulate NO3? toward the fine mode range. This size shift would decrease the dry deposition flux of the fixed nitrogen species on coastal waters and accelerate atmospheric transport of them to the remote oceanic areas.  相似文献   
9.
Environmental Science and Pollution Research - In this research paper, potassium-activated geopolymer cubes (GeoC) fabricated from waste coal fly ash with low-temperature calcination were...  相似文献   
10.
Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250°C) in incinerators.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号