首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   2篇
安全科学   12篇
废物处理   2篇
环保管理   19篇
综合类   12篇
基础理论   21篇
污染及防治   20篇
评价与监测   3篇
社会与环境   3篇
  2023年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   8篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   10篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  1999年   3篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1983年   1篇
  1980年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有92条查询结果,搜索用时 0 毫秒
1.
Sedimentation rates and sediment provenance were examined for lacustrine sediments deposited in Fairfield Lake, western North Carolina, during the past 111 years. Stratigraphic, radionuclide, and cartographic data indicate that sedimentation rates have increased several fold during the past three decades in response to localized development. The magnitude of increased sedimentation was surprising given limited development within the basin: 0.12 to 0.68 buildings/ha in 2000 in those parts directly delivering sediment to the dated cores. Thus, the analysis illustrates the potential sensitivity of watersheds in the southern Appalachians to changes in land cover. An approach that combined geochemical fingerprinting with sediment mixing models was subsequently evaluated to determine its ability to accurately estimate the contribution of sediment from (1) major bedrock formations that underlie the watershed and (2) potential sources associated with four land cover categories. Sediment sources in both analyses proved difficult to geochemically fingerprint to greater than 90 percent accuracy using data on acid‐soluble metals and selected isotopes of lead (Pb). The relative contributions of sediment from delineated sources, estimated by the mixing models, generally corresponded with known temporal and spatial patterns of land cover. However, the models were plagued by two significant problems — the chemical alteration of sediments as they were transported through upland streams to depositional sites within the lake and the loss of elemental mass. Thus, future investigations using the fingerprinting approach in this area of intense weathering, and presumably others, will need to modify the existing methods to more accurately elucidate changes in sediment provenance related to development.  相似文献   
2.
Jonathan M. H. Green  Gemma R. Cranston  William J. Sutherland  Hannah R. Tranter  Sarah J. Bell  Tim G. Benton  Eva Blixt  Colm Bowe  Sarah Broadley  Andrew Brown  Chris Brown  Neil Burns  David Butler  Hannah Collins  Helen Crowley  Justin DeKoszmovszky  Les G. Firbank  Brett Fulford  Toby A. Gardner  Rosemary S. Hails  Sharla Halvorson  Michael Jack  Ben Kerrison  Lenny S. C. Koh  Steven C. Lang  Emily J. McKenzie  Pablo Monsivais  Timothy O’Riordan  Jeremy Osborn  Stephen Oswald  Emma Price Thomas  David Raffaelli  Belinda Reyers  Jagjit S. Srai  Bernardo B. N. Strassburg  David Webster  Ruth Welters  Gail Whiteman  James Wilsdon  Bhaskar Vira 《Sustainability Science》2017,12(2):319-331
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.  相似文献   
3.
Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high‐priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators’ relatively small functional requirements—habitat range, life cycle, and nesting behavior—relative to larger mammals, we argue that pollinators put high‐priority and high‐impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.  相似文献   
4.
How predators vary search patterns in response to prey predictability is poorly known. For example, marine invertebrates may be predictable but of low energy value, while fish may be of higher energy value but unpredictable at large (pelagic schools) or small (solitary benthics) spatial scales. We investigated the search patterns of the thick-billed murre (Uria lomvia), an Arctic seabird feeding on invertebrates, pelagic fish, or benthic fish. Foraging ranges at the Coats Island colony are generally smaller (<240 min per trip) than at larger colonies, and many birds specialize in foraging tactics and diet. Underwater search times for benthic fish were higher than for pelagic fish or invertebrates while above-water search times for pelagic fish were higher than for benthic fish or invertebrates. There were few stops during trips. Total trip time, flying time, number of flights, and number of dives were intercorrelated and increased with prey energy content, suggesting that longer trips involved fewer prey encounters due to selection of higher-quality, but rarer, prey items. Flight times were not Lévy-distributed and seabirds may have used area-restricted searches. The high degree of specialization, apparent absence of information center effects, and reduced above-water searching times may be linked to the relatively small colony size and the resulting short commuting distances to feeding areas, leading to greater prey predictability. We concluded that prey predictability over various scales affected predator search patterns.  相似文献   
5.
Ten ways remote sensing can contribute to conservation   总被引:1,自引:0,他引:1       下载免费PDF全文
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain‐referral survey. We then used a workshop‐based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real‐time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing‐derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?  相似文献   
6.
Foraging theory predicts that animals will adjust their foraging behavior in order to maximize net energy intake and that trade-offs may exist that can influence their behavior. Although substantial advances have been made with respect to the foraging ecology of large marine predators, there is still a limited understanding of how predators respond to temporal and spatial variability in prey resources, primarily due to a lack of empirical studies that quantify foraging and diving behavior concurrently with characteristics of prey fields. Such information is important because changes in prey availability can influence the foraging success and ultimately fitness of marine predators. We assessed the diving behavior of juvenile female harbor seals (Phoca vitulina richardii) and prey fields near glacial ice and terrestrial haulout sites in Glacier Bay (58°40′N, ?136°05′W), Alaska. Harbor seals captured at glacial ice sites dived deeper, had longer dive durations, lower percent bottom time, and generally traveled further to forage. The increased diving effort for seals from the glacial ice site corresponded to lower prey densities and prey at deeper depths at the glacial ice site. In contrast, seals captured at terrestrial sites dived shallower, had shorter dive durations, higher percent bottom time, and traveled shorter distances to access foraging areas with much higher prey densities at shallower depths. The increased diving effort for seals from glacial ice sites suggests that the lower relative availability of prey may be offset by other factors, such as the stability of the glacial ice as a resting platform and as a refuge from predation. We provide evidence of differences in prey accessibility for seals associated with glacial ice and terrestrial habitats and suggest that seals may balance trade-offs between the costs and benefits of using these habitats.  相似文献   
7.
Studies of animal acoustic communication have found that the frequency and temporal structure of acoustic signals can be shaped by selection for efficient communication. The directionality of acoustic radiation may also be adapted for communication, but we know relatively little about how directionality varies with signal function, sender morphology, and the environment in which the sound is transmitted. We tested the hypothesis that the directionality of a vocalization is adapted to its function in communication. This hypothesis predicts that vocalizations that are directed to multiple conspecifics (e.g., advertisements and alarms) will be relatively omnidirectional because this will maximize the number of neighbors and mates that receive the signal, and that vocalizations directed to particular individuals will be relatively directional because this will maximize detection of the signal by the targeted receiver and minimize eavesdropping. To test these predictions, we measured the directionality and amplitude of red-winged blackbird (Agelaius pheoniceus) vocalizations in the field by recording vocalizations simultaneously on eight calibrated microphones encircling the bird. We found significant variation in directionality among vocalizations. Supporting our predictions, we found that the most omnidirectional vocalizations were those used to alert conspecifics to danger, and the most directional vocalizations are those used during courtship and solicitation of copulation, when the costs of eavesdropping are likely to be high. These results suggest that the directionality of red-winged blackbird vocalizations is shaped by selection for effective communication. This study is the first to provide statistical support for the hypothesis that directionality is related to the function of a signal in communication.  相似文献   
8.
The communication of science to science users is evolving to an approach that translates knowledge to targeted audiences. Under this evolution, knowledge brokers play an increasingly important role and users help ‘pull’ the required science to meet a policy or management imperative. To do this effectively, more insight is required into the knowledge seeking behaviour of science users and practitioners. The findings from a series of interviews that identify the science needs of Ontario’s Conservation Authorities (CAs) are presented. Results indicate that emerging functions, such as source water protection and integrated water resource planning, require more science input than mature functions. Senior CA officials view personal communication with their knowledgeable staff as the most used, accessible, trustworthy, relevant, shared, and preferable source of science information. While the internet and media were considered highly accessible, they were not viewed as trustworthy. We found no relationship between CA size and science use. Further research is needed to identify where junior and intermediate CA staff obtain their science knowledge from and whether this varies as a function of CA size. Our findings will be of interest to both policy/program communities and science providers.  相似文献   
9.
The development, testing, and application of a probabilistic model framework for the light attenuation coefficient for downwelling irradiance (Kd) and Secchi disc transparency (SD) that resolves the effects of several light attenuating constituents, including phytoplankton and nonliving particles (tripton), is documented. The model is consistent with optical theory, partitioning the magnitudes of the light attenuating processes of absorption and scattering according to the contributions of attenuating constituents as simple summations. The probabilistic framework accommodates variations in the character and concentrations of these constituents and ambient conditions during measurements, and recognizes a linear relationship between the magnitudes of absorption and scattering by tripton. The model is tested and applied for a 21 km reach of the Seneca River, New York, that features optical gradients caused by an intervening hypereutrophic lake and dam, and a severe infestation of the exotic zebra mussel. The model is applied to resolve the roles of phytoplankton and tripton in regulating measured longitudinal patterns of SD along the study reach of the river and increases in SD since the zebra mussel invasion, and to predict decreases in Kd since the invasion.  相似文献   
10.
Natural emissions adopted in current regional air quality modeling are updated to better describe natural background ozone and PM concentrations for North America. The revised natural emissions include organosulfur from the ocean, NO from lightning, sea salt, biogenic secondary organic aerosol (SOA) precursors, and pre-industrial levels of background methane. The model algorithm for SOA formation was also revised. Natural background ozone concentrations increase by up to 4 ppb in annual average over the southeastern US and Gulf of Mexico due to added NO from lightning while the revised biogenic emissions produced less ozone in the central and western US. Natural PM2.5 concentrations generally increased with the revised natural emissions. Future year (2018) simulations were conducted for several anthropogenic emission reduction scenarios to assess the impact of the revised natural emissions on anthropogenic emission control strategies. Overall, the revised natural emissions did not significantly alter the ozone responses to the emissions reductions in 2018. With revised natural emissions, ozone concentrations were slightly less sensitive to reducing NOx in the southeastern US than with the current natural emissions due to higher NO from lightning. The revised natural emissions have little impact on modeled PM2.5 responses to anthropogenic emission reductions. However, there are substantial uncertainties in current representations of natural sources in air quality models and we recommend that further study is needed to refine these representations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号