首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
综合类   11篇
污染及防治   2篇
  2013年   1篇
  2011年   1篇
  1978年   1篇
  1968年   1篇
  1937年   1篇
  1936年   1篇
  1932年   1篇
  1929年   1篇
  1926年   2篇
  1925年   1篇
  1922年   2篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Cyclic volatile methyl siloxanes (cVMS) are high volume production chemicals used in a wide range of industrial and consumer products. Three cVMS compounds (D4, D5, and D6) have and are undergoing environmental risk evaluations in several countries and have been proposed for legal regulation in Canada. As interest in monitoring concentrations of these chemicals in the environment increase, there is a need to evaluate the analytical procedures for cVMS in biological matrices in order to assess the quality of data produced. The purpose of this study was to determine laboratory testing performance for measuring residues of D4, D5, and D6 in a standard set of fish homogenate samples and to estimate limits of determination for each substance. The samples sent to each laboratory consisted of homogenized whole body tissues of hatchery raised rainbow trout which were fed food fortified with D4, D5, and D6 (dosed) and trout that were fed standard food rations (control). The participants analyzed each sample using their analytical method of choice using their own standards and procedures for quantification and quality control. With a few exceptions, participating laboratories generated comparable results for D4, D5, and D6 in both the dosed and control samples having z-scores between 2 and −2. Method detection limits for the whole fish matrix were on average 2.4 ng g−1 ww for D4, 2.3 ng g−1 ww for D5, and 1.8 ng g−1 ww for D6.  相似文献   
2.
3.
4.
5.
Kornhuber  H. H.  Schleitzer-Rust  E.  Kuhn-Schnyder  E.  Amstutz  G. C.  Fiechter  A.  Cammann  K.  Jørgensen  C. K.  Jaenicke  L.  Neuhoff  V.  Gerhards  E.  Wacker  A.  Seeger  K.  Ziegler  H.  Hutzinger  O.  Seibold  E. 《Die Naturwissenschaften》1978,65(8):445-448
The Science of Nature -  相似文献   
6.
7.
The Science of Nature -  相似文献   
8.
9.
Contamination and analytical variation can significantly hinder trace analysis of cyclic methyl volatile siloxanes (cVMS); potentially resulting in the report of false positives at concentrations approaching detection limits. To assess detection and variation associated with trace cVMS analysis in environmental matrices, a co-operative laboratory comparison for the analysis of octametylcyclotetrasiloxane (D4), decamethylcylcopentasiloxane (D5), and dodecametylcyclohexasiloxane (D6) in sediment and biota from the Svalbard Archipelago was conducted. Two definitions of detection limits were evaluated in this study; method detection limits (MDL, matrix defined) and limits of detection (LOD, solvent defined). D5 was the only cVMS detected above both LOD (0.08–0.81 ng g−1 ww) and MDL (0.47–2.36 ng g−1 ww) within sediment by all laboratories where concentrations ranged from 0.55 to 3.91 ng g−1 ww. The percentage of positive detects for D5 decreased by 80% when MDL was defined as the detection limit. D5 was also detected at the highest frequency among all laboratories in fish liver with concentrations ranging from 0.72 to 345 ng g−1 ww. Similar to sediment, percentage of positive detects for D5 decreased by 60% across all laboratories for fish livers when using MDL (0.68–3.49 ng g−1 ww). Similar observations were seen with both D4 and D6, indicating that sample matrix significantly contributes to analytical response variation. Despite differences in analytical methods used between laboratories, good agreement was obtained when using MDL to define detection limits. This study shows the importance of incorporating variation introduced by sample matrices into detection limit calculations to insure data accuracy of cVMS at low concentrations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号