首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   2篇
基础理论   1篇
污染及防治   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
Summary. Many secondary plant compounds are involved in defense against both insect herbivores and pathogens. Two secondary plant compounds of Plantago lanceolata, the iridoid glycosides catalpol and its precursor aucubin, are well known for their deterrent effects on generalist and non-adapted specialist insect herbivores. We tested the effects of these compounds on the in-vitro growth of a specialist and generalist fungal pathogen of this host species. Two chemical forms of these iridoids were tested. The glycosides and their aglycones, the products of enzymatic conversion by specific $/Beta$-glucosidase enzymes. The glycosides enhanced growth of both the specialist fungus Diaporthe adunca and the generalist fungus Fusarium moniliforme var. subglutinans. The positive effect of these glycosides on the generalist fungus is in sharp contrast with the generally negative effects of these glysosides on generalist insect herbivores. The aglycones of aucubin and catalpol reduced the growth of the specialist fungus D. adunca, but, contrary to expectation, enhanced the growth of the generalist fungus F. moniliforme var. subglutinans. Effects of aucubin on D. adunca were stronger than effects of catalpol. This was true both for the growth stimulating effects of the glycosides and for the fungitoxic effects of the aglycones. We therefore expect that the effects of these iridoids in P. lanceolata on the specialist fungus will strongly depend on the ratio between catalpol and its precursor aucubin and the chemical form (glycoside or aglycone) in which these compounds are encountered by the fungus during growth. Our results suggest that iridoid glycosides in P. lanceolata can be used as defense against both herbivores and pathogens, but that their effects are highly specific with respect to the natural enemy species that is encountered. Received 11 April 2002; accepted 9 August 2002  相似文献   
3.
研究了中国北方某流域不同污染源的污染贡献,结果表明:COD贡献量点源为719.21 t,农业面源污染为7 488.02 t,农业面源污染是该流域水环境污染的主要来源.农业面源污染物等标污染负荷总量为8 359.44×106 m3/a.不同污染源污染贡献比例:农田化肥占49.24%、畜禽养殖占35.10%、农村生活占14.69%、农作物秸秆仅占0.97%.污染物贡献量比例.TN占56.46%、TP占39.06%、COD仅占4.48%.  相似文献   
4.

The identification of species-rich areas and their prognosticated turnover under climate change are crucial for the conservation of endemic taxa. This study aims to identify areas of reptile endemicity richness in a global biodiversity hot spot (Morocco) under current and future climatic conditions and to investigate the role of protected areas in biodiversity conservation under climate change. Species distribution models (SDM) were performed over the distribution of 21 endemic reptiles, combined to estimate current species richness at 1?×?1 km resolution and projected to years 2050 and 2080 according to distinct story lines and ensemble global circulation models, assuming unlimited and null dispersion ability. Generalized additive models were performed between species richness and geographic characteristics of 43 protected areas. SDM found precipitation as the most important factor related to current species distributions. Important reductions in future suitable areas were predicted for 50 % of species, and four species were identified as highly vulnerable to extinction. Drastic reductions in species-rich areas were predicted for the future, with considerable variability between years and dispersal scenarios. High turnover rates of species composition were predicted for eastern Morocco, whereas low values were forecasted for the Northern Atlantic coast and mountains. Species richness for current and future conditions was significantly related to the altitude and latitude of protected areas. Protected areas located in mountains and/or in the Northern Atlantic coast were identified as refugia, where population monitoring and conservation management is needed.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号