首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
环保管理   1篇
综合类   3篇
基础理论   2篇
污染及防治   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2002年   1篇
  1967年   1篇
  1951年   1篇
  1950年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
This study aimed to determine whether >110 years of sewage application has led to recognizable changes in the metal chemistry of soils from former sewage farms, Berlin, Germany. Background concentrations of soils and element enrichment factors were used for the evaluation of possible perturbations of natural element abundances in sewage farm soils. Calculations verify that precious metals (Ag, Au) as well as P, Corg, and heavy metals (Cd, Cu, Ni, Pb, Sn, and Zn) are invariably enriched in sewage farm topsoils (0–0.1 m depth) compared to local and regional background soils. Long-term irrigation of soils with municipal wastewater has caused significant heavy metal contamination as well as a pronounced enrichment in precious metals. Leaching of metals including Ag into underlying aquifers may impact on the quality of drinking water supplies.  相似文献   
4.
Soil amendments can immobilize metals in soils, reducing the risks of metal exposure and associated impacts to flora, fauna and human health. In this study, soil amendments were compared, based on "closed system" water extracts, for reducing metal mobility in metal-contaminated soil from the Broken Hill mining center, Australia. Phosphatefertilizer (bovine bone meal, superphosphate, triple superphosphate, potassium orthophosphate) and pine bark (Pinus radiata) were applied to two soils (BH1, BH2) contaminated with mining waste. Both soils had near neutral to alkaline pH values, were sulfide- or sulfate-rich, and contained metal and metalloid at concentrations that pose high environmental risks (e.g., Pb = 1.25 wt% and 0.55 wt%, Zn = 0.71 wt% and 0.47 wt% for BH1 and BH2, respectively). The addition of fertilizers and/or pine bark to both soil types increased water extractable metals and metalloids concentrations (As, Cd, Cu, Fe, Mn, Pb, Sb, Zn) compared with nonamended soils. One or more of the elements As, Cd, Cu, Mn, Pb, and Zn increased significantly in extracts of a range of different soil+pine bark and soil+fertilizer+piner+pine bark tests in response to increased pine bark doses. By contrast, Fe and Sb concentrations in extracts did not change significantly with pine bark addition. Solution pH was decreased by phosphate fertilizers (except for bovine bone meal) and pine bark, and pine bark enhanced dissolved organic carbon. At least in the short-term, the application of phosphate fertilizers and pine bark proved to be an ineffective method for controlling metal and metalloid mobility in soils that contain admixtures of polymetallic, polymineralic mine wastes.  相似文献   
5.
6.
An exposure assessment was conducted on naturally metal enriched topsoils of the city of Port Macquarie in order to establish whether the soils pose any threat to human health. Surface soils (0–10 cm depth, <2 mm) were investigated for their total, bioavailable and leachable Cr and Ni concentrations. Total metal concentrations ranged from 145 to 4540 mg Cr kg–1 and 20 to 2030 mg Ni kg–1, whereas soil extractions revealed low leachable contaminant concentrations (EDTA extraction: <0.1–0.2 mg Cr L–1 and <0.1–4.7 mg Ni L–1; acetic acid extraction: <0.1 mg L–1 Cr and Ni). Thus the bioavailability of Cr and Ni to plants is low, the leaching of metals into ground and surface waters is insignificant and the pathways of these metal pollutants from topsoils into residents are limited to the inadvertent ingestion, inhalation and skin adsorption of soil metals. Simulated gastric experiments, using hydrochloric acid, indicated that less than 0.01% of the total Cr and 0.1–2.4% of the total Ni ingested are soluble and available, for uptake into the human body. Critical receptors, such as small children would have to ingest considerable soil quantities (> 11.8 g per day) over long periods of time to experience an appreciable risk of deleterious effects. Thus, although Cr and Ni are present in high concentrations, the effective uptake of Cr and Ni from soil by the majority of residents is insignificant. The possibility that the Ni enriched topsoil induces allergic contact dermatitis in sensitised individuals remains to be evaluated.  相似文献   
7.
This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号