首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   4篇
  国内免费   6篇
安全科学   7篇
废物处理   4篇
环保管理   12篇
综合类   14篇
基础理论   17篇
污染及防治   23篇
评价与监测   4篇
社会与环境   7篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   10篇
  2015年   5篇
  2014年   7篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   7篇
  2007年   1篇
  2006年   9篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1981年   2篇
  1953年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data‐deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data‐deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data‐deficient assessments. To develop this, we reviewed 2879 data‐deficient assessments in 6 animal groups and identified 8 main justifications for assigning data‐deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data‐deficient species slipping unnoticed toward extinction.  相似文献   
2.
The results of an inter-laboratory comparison exercise to determine cytostatic anticancer drug residues in surface water, hospital wastewater and wastewater treatment plant effluent are reported. To obtain a critical number of participants, an invitation was sent out to potential laboratories identified to have the necessary knowledge and instrumentation. Nine laboratories worldwide confirmed their participation in the exercise. The compounds selected (based on the extent of use and laboratories capabilities) included cyclophosphamide, ifosfamide, 5-fluorouracil, gemcitabine, etoposide, methotrexate and cisplatinum. Samples of spiked waste (hospital and wastewater treatment plant effluent) and surface water, and additional non-spiked hospital wastewater, were prepared by the organising laboratory (Jo?ef Stefan Institute) and sent out to each participant partner for analysis. All analytical methods included solid phase extraction (SPE) and the use of surrogate/internal standards for quantification. Chemical analysis was performed using either liquid or gas chromatography mass (MS) or tandem mass (MS/MS) spectrometry. Cisplatinum was determined using inductively coupled plasma mass spectrometry (ICP-MS). A required minimum contribution of five laboratories meant that only cyclophosphamide, ifosfamide, methotrexate and etoposide could be included in the statistical evaluation. z-score and Q test revealed 3 and 4 outliers using classical and robust approach, respectively. The smallest absolute differences between the spiked values and the measured values were observed in the surface water matrix. The highest within-laboratory repeatability was observed for methotrexate in all three matrices (CV?≤?12 %). Overall, inter-laboratory reproducibility was poor for all compounds and matrices (CV 27–143 %) with the only exception being methotrexate measured in the spiked hospital wastewater (CV?=?8 %). Random and total errors were identified by means of Youden plots.  相似文献   
3.
Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.  相似文献   
4.
The growing population number and traffic loads, increasing environmental pressures, agricultural intensification, and the establishment of Mount Cameroon National Park demand farsighted environmental management in the region and the definition of a favorable ecological status. Since plants grow in the interface between soils and the atmosphere they can be used as passive biomonitors for the environmental quality. At the same time, the accumulation of nutrients and pollutants in crops is linked to human health, so that foliar elemental levels can be used as an integrative measure for environmental pollution and impact assessment. In the present study, we collected leaf samples of plantain, cassava, cocoyam, and maize on 28 sites at the southern flanks of Mt. Cameroon and determined 20 chemical elements. Air pollution in the study area comes from biomass and waste burning mainly, but emissions from traffic and a large refinery were believed to also play a significant role. However, spatial patterns in foliar elemental concentrations reflected the geochemistry rather than specific sources of pollution. Significant differences in foliar metal and nutrient levels were observed between the four species, indicating a different demand and uptake of specific elements. The results were compared to published data on nutrient concentrations in the tested species and the so-called reference plant. The data can be used as a baseline for future studies in plant nutrition and the environmental monitoring in inner tropical regions where these crops are grown.  相似文献   
5.
6.
7.
Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.  相似文献   
8.
A model based on theKLS factors of the Universal Soil Loss Equation (USLE) accurately predicted temporal dynamics and relative peak levels of suspended solids, turbidity, and phosphorus in an agricultural watershed with well-protected streambanks and cultivation to the stream edge. Fine suspended solids derived from surface runoff appeared to be a major component of the suspended solids in this stream. The model did not predict the same parameters in a watershed with unstable channel substrates, exposed streambanks, and heterogeneity in riparian vegetation and channel morphology. The rate of increase in concentration of the water quality parameters was higher than predicted in areas without riparian vegetation and with unstable substrates. Peak levels were higher than predicted where unstable channel substrates occurred, and potential energy of the stream was high because of stream alterations (removal of near-stream vegetation and creation of a uniform, straight channel). Timing of the peak levels of suspended solids, turbidity, and phosphorus in these areas seemed related to major flushes of discharge due to delayed inputs from the surface or subsurface or both or to rapid urban drainage. Higher suspended solids concentration in this stream seemed to involve larger quantities of large particles. Thus, the USLE may not adequately predict relative water quality conditions within a watershed when variation in channel morphology and riparian vegetation exists. We make the following recommendations:
  1. Models to predict water quality effects of management programs should combine a terrestrial phase (which details hydrologic and erosion processes associated with surface runoff) with an aquatic phase (which details hydrologic processes of scour and sediment transport in channels). The impact of near-channel areas on these hydrologic processes should receive special attention.
  2. Sampling schemes should be designed to account for the impact on water quality of both watershed land surface and inand near-channel processes. In order to help distinguish sources of suspended solids, researchers should emphasize analysis of size distribution of particles transported.
  3. Best management systems for improving the broadest range of water resources in agricultural watersheds need to be based on an expanded “critical area” approach, which includes identification of critical erosive and depositional areas in both terrestrial and aquatic environments.
  相似文献   
9.
There has been increased interest in the role of community-based action in promoting sustainable lifestyles in recent years, but relatively limited evidence on the effects of such activity on participants' behaviours. In this paper, I present an evaluation of the effects of community-based action for sustainability on participants' lifestyles. I draw on extensive qualitative research to assess how much change participants of community sustainability projects report, what kinds of participants these projects attract and how the circumstances of these projects affect the changes that participants make. The main findings are that these initiatives have different effects on different people. Those who are new to sustainability and who are actively involved in cohesive groups, which are specifically targeting their lifestyles, are more likely to report substantial changes. I present a model to explain what change occurs, for which types of participants, in what circumstances as a result of community-based action.  相似文献   
10.
To test the sensitivity of using atmospheric (85)Kr to detect undeclared separation of plutonium from irradiated nuclear-reactor fuel, measurements of atmospheric (85)Kr taken in Tsukuba, Japan are analyzed to determine: (1) a lower limit of detection for discovering anthropogenic (85)Kr emissions, (2) the probability of detecting plutonium separation at the Tokai Reprocessing Plant, and (3) the extent to which these results can be generalized to other sites. A LLD of at least 3.4 sigma=0.14 Bq/m(3) with a theoretical false-positive rate of 0.05% is recommended for safeguards' purposes. At this threshold, the continuous separation of 100, 300, and 900 g equivalent weapon-grade plutonium per day was found to correspond to 10%, 50%, and 80% probability of detection, respectively. The smallest detected concentration was for the continuous separation of 45 g/day, with a probability of detection of about 0.6%. It was found that the detection rate is determined predominantly by the weather.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号