首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   5篇
  国内免费   1篇
环保管理   23篇
综合类   3篇
基础理论   2篇
评价与监测   4篇
  2023年   1篇
  2019年   9篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   
2.
A simple and sensitive spectrophotometric method for the determination of chromium has been developed. The method is based on the diazotization of Dapsone in hydroxylamine hydrochloride medium and coupling with N-(1-Napthyl) Ethylene Diamine Dihydrochloride by electrophilic substitution to produce an intense pink azo-dye, which has absorption maximum at 540 nm. The Beer's law is obeyed from 0.02-1.0 microg mL(-1) and the molar absorptivity is 3.4854 L mol(-1) cm(-1). The Limits of quantification and Limit of detection of the proposed method are 0.0012 microg mL(-1) and 0.0039 microg mL(-1) respectively. The method has been successfully applied for the determination of chromium in water samples and the results were statistically evaluated with that of the reference method.  相似文献   
3.
4.
Use of models to simulate crop production has become important in optimizing irrigation management in arid and semiarid regions. However, applicability and performance of these models differ across regions, due to differences in environmental and management factors. The AquaCrop model was used to simulate soil water content (SWC), evapotranspiration (ET), and yield for grain sorghum under different irrigation regimes and dryland conditions at two sites in Central and Southern High Plains. Prediction error (Pe), estimated as the difference between simulated and measured divided by measured, for SWC ranged from ?17% to 4% in fully irrigated, ?3% to ?10% in limited irrigated, and ?16% to 25% in dryland treatments. The Pe within ±4%, ?5%, and ?17% to 24% were attained for seasonal ET under fully irrigated, limited irrigated, and dryland conditions, respectively. Pe values for grain yield were within those previously reported and ranged from ?10% to 12%, ?12% to 7%, and 9% to 17% for fully irrigated, limited irrigated and dryland conditions, respectively. Overall performance of the AquaCrop model showed it could be used as an effective tool for evaluating the impacts of variable crop and irrigation managements on the production of grain sorghum in the study area. Finally, the application of the model in the study area revealed planting date has a significant impact on sorghum yield and irrigation requirements, but the impact of planting density was negligible. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
5.
The Agricultural Production Systems sIMulator model validated in a prior study for winter wheat was used to simulate yield, aboveground crop biomass (BM), transpiration (T), and evapotranspiration under four irrigation capacities (ICs) (0, 1.7, 2.5, and 5 mm/day) with two nitrogen (N) application rates (N1, 94 kg N/ha; N2, 160 kg N/ha) to (1) understand the performance of winter wheat under different ICs and (2) develop crop water production function under various ICs and N rates. Evaluation was based on yield, aboveground crop BM, transpiration productivity (TP), crop water productivity (WP), and irrigation WP (IWP). Simulation results showed winter wheat yield increased with increase in N application rate and IC. However, the rate of yield increase gradually reduced with additional irrigation beyond 2.5 mm/day. A 5 mm/day IC required a total of 190 mm irrigation and produced a 5%–16% yield advantage over 2.5 mm/day. This indicates it is possible to reduce groundwater use for wheat by 50% incurring only 5%–16% yield loss relative to 5 mm/day. The TP and IWP for grain were slightly higher under IC of 1.7 mm/day (15.2–16.1 kg/ha/mm and 0.98–1.6 kg/m3) when compared to 5 mm/day (14.7–15.5 kg/ha/mm and 0.6–1.06 kg/m3), respectively. Since TP and IWPs are relatively higher under lower ICs, winter wheat could be a suitable crop under lower ICs in the region. Relationship between yield–T and yield–ET was linear with a slope of 15–16 and 9.5–10 kg/ha/mm, respectively. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
6.
Accurate estimation of evapotranspiration (ET) is essential to improve water use efficiency of crop production systems managed under different water regimes. The Agricultural Policy/Environmental eXtender (APEX) model was used to simulate ET using four potential ET (ETp) methods. The objectives were to determine sensitive ET parameters in dryland and irrigated cropping systems and compare ET simulation in the two systems using multiple performance criteria. Measured ET and crop yield data from lysimeter fields located in the United States Department of Agriculture‐Agricultural Research Service Bushland, Texas were used for evaluation. The number of sensitive parameters was higher for dryland (11–14) than irrigated cropping systems (6–8). Only four input parameters: soil evaporation plant cover factor, root growth soil strength, maximum rain intercept, and rain intercept coefficient were sensitive in both cropping systems. Overall, it is possible to find a set of robust parameter values to simulate ET accurately in APEX in both cropping systems using any ETp method. However, more computation time is required for dryland than irrigated cropping system due to a relatively larger number of sensitive input parameters. When all inputs are available, the Penman–Monteith method takes the shortest computation time to obtain one model run with robust parameter values in both cropping systems. However, in areas with limited datasets, one can still obtain reasonable ET simulations using either Priestley–Taylor or Hargreaves. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
7.
Fluorosis, which severely affects teeth and bones, is one of the common water-related diseases listed by the World Health Organization. Fluorosis is caused by ingestion of groundwater containing fluoride in excess of 1.5 mg/l and is widespread in about 25 countries. As majority of fluorosis affected regions occur in arid or semi-arid regions of the world, de-fluoridation of the limited available water resource forms the viable solution. Though several methods of de-fluoridation have been proposed, only few are implemented in field. Further, the existing field methods have various limitations such as cost, efficiency, quality of treated water and disposal of byproducts of treatment. In search of a sustainable solution towards mitigating the fluorosis problem, a new method of de-fluoridation using magnesium oxide has been developed in laboratory. Present study addresses issues that will assist in successful implementation of the new de-fluoridation method in field, using a domestic de-fluoridation unit.  相似文献   
8.
The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large‐scale spatial representation of ETref, which is essential for regional scale water resources management. Data used in the development of NOAA daily ETref maps are derived from observations over surfaces that are different from short (grass — ETos) or tall (alfalfa — ETrs) reference crops, often in nonagricultural settings, which carries an unknown discrepancy between assumed and actual conditions. In this study, NOAA daily ETos and ETrs maps were evaluated for accuracy, using observed data from the Texas High Plains Evapotranspiration (TXHPET) network. Daily ETos, ETrs and the climatic data (air temperature, wind speed, and solar radiation) used for calculating ETref were extracted from the NOAA maps for TXHPET locations and compared against ground measurements on reference grass surfaces. NOAA ETref maps generally overestimated the TXHPET observations (1.4 and 2.2 mm/day ETos and ETrs, respectively), which may be attributed to errors in the NLDAS modeled air temperature and wind speed, to which reference ETref is most sensitive. Therefore, a bias correction to NLDAS modeled air temperature and wind speed data, or adjustment to the resulting NOAA ETref, may be needed to improve the accuracy of NOAA ETref maps.  相似文献   
9.
Drought is a complex and highly destructive natural phenomenon that affects portions of the United States almost every year, and severe water deficiencies can often become catastrophic for agricultural production. Evapotranspiration (ET) by crops is an important component in the agricultural water budget; thus, it is advantageous to include ET in agricultural drought monitoring. The main objectives of this study were to (1) conduct a literature review of drought indices with a focus to identify a simple but simultaneously adequate drought index for monitoring agricultural drought in a semiarid region and (2) using the identified drought index method, develop and evaluate time series of that drought index for the Texas High Plains. Based on the literature review, the Standardized Precipitation‐Evapotranspiration Index (SPEI) was found to satisfy identified constraints for assessing agricultural drought. However, the SPEI was revised by replacing reference ET with potential crop ET to better represent actual water demand. Data from the Texas High Plains Evapotranspiration network was used to calculate SPEIs for the major irrigated crops. Trends and magnitudes of crop‐specific, time‐series SPEIs followed crop water demand patterns for summer crops. Such an observation suggests that a modified SPEI is an appropriate index to monitor agricultural drought for summer crops, but it was found to not account for soil water stored during the summer fallow period for winter wheat.  相似文献   
10.
The varying traffic parameters such as traffic volume, speed, shape and size, and terrain roughness conditions play a vital role on dispersion of pollutants in the near field of roadways. Simulation experiments were carried out in the Environmental Wind Tunnel (EWT) to evaluate the traffic induced effects on vertical dispersion parameter (σ z ) for heterogeneous traffic conditions in the near field of roadways for evaluating the effect of variations in traffic volume, terrain roughness condition and approaching wind direction. The model vehicle movement system was fabricated and made operational in the EWT, which allowed the variation in traffic volume, speed and wind road inclination. Sixty-six hydrocarbon tracer experiments were performed to evaluate σ z in the near field of roadways for variable traffic volume, three terrain roughness conditions and two approaching wind directions (i.e., 90° and 60°). The values of σ z for heterogeneous traffic conditions were found to be higher for low roughness conditions in comparison to other two higher roughness conditions for various traffic volumes and approaching wind directions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号