首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
废物处理   2篇
环保管理   6篇
综合类   8篇
基础理论   14篇
污染及防治   16篇
评价与监测   1篇
社会与环境   1篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1980年   1篇
  1972年   3篇
  1971年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
2.

Background, aim, and scope

The project was set to construct an extensive wetland in the southernmost region of Israel at Kibbutz Neot Smadar (30°02′45″ N and 35°01′19″ E). The results of the first period of monitoring, summary, and perspectives are presented. The constructed wetland (CW) was built and the subsequent monitoring performed in the framework of the Southern Arava Sustainable Waste Management Plan, funded by the EU LIFE Fund. The specific aims were: (1) To end current sewage disposal and pollution of the ground, the aquifer, and the dry river bed (wadi) paths by biologically treating the sewage as part of the creation of a sustainable wetland ecosystem. (2) Serve as an example of CW in the Negev highlands and the Arava Valley climates for neighboring communities and as a test ground for plants and building methods appropriate to hyper arid climate. (3) Serve as an educational resource and tourist attraction for groups to learn about water reuse, recycling, local wildlife and migrating birds, including serving the heart of a planned Ecological–Educational Bird Park. This report is intended to allow others who are planning similar systems in hyper arid climates to learn from our experience.

Materials and methods

The project is located in an extreme arid desert with less than 40 mm of rain annually and temperature ranges of ?5°C to +42°C. The site receives 165–185 m3 of municipal and agricultural wastes daily, including cowshed and goat wastes and winery outflow.

Results

The CW establishment at Neot Smadar was completed in October 2006. For 8 months, clean water flowed through the system while the plants were taking root. In June 2007, the wetland was connected to the oxidation pond and full operation began. Because of seepage and evaporation, during the first several months, the water level was not high enough to allow free flow from one bed to the next. To bed A, the water was pumped periodically from the oxidation pond (Fig. 1) and from there flowed by gravitation through the rest of the system. The initial results of the monitoring are promising. In nearly all measurements, the system succeeded as expected to reduce levels of contaminants at least to the level acceptable for irrigating fruit trees and often to the level of unlimited irrigation. The introduction of the plants in the system and their physiological performance were evaluated and were found to correlate well to the quality of water in the various beds.

Discussion

It should be said at the outset that evaluation of the performance of a CW system is a long-term process. Thus, the main aim of this report is to present the problems, difficulties, preliminary results, and concepts concerned with the first stage of establishment of CW in an extremely dry region.

Conclusions

The CW system was designed to dispose of municipal and agricultural wastes in a way that not merely reduces pollution, but adds to environmental quality by creating accessible parkland for local residents and tourists. Several factors affected the performance of the system at the initial stages of operation: ecological balance between microbes and plants, big seasonal variations, seepage and evaporation reduced the flow in the initial operation of the system. Despite the initial difficulties, the quality of water coming out the system is acceptable for irrigation.

Recommendations and perspectives

The CW can function well under extreme dryland conditions. The oxidation pond was the major source of evaporation and bad odors. Therefore, alternatives to the oxidation pond are needed. Cost effectiveness of the system still has to be evaluated systematically.  相似文献   
3.
Mimosa tannin and phenol-based synthetic tannin (syntan) were tested for toxicity to sea urchin (Paracentrotus lividus and Sphaerechinus granularis) early development and to marine algal growth (Dunaliella tertiolecta). Sea urchin embryogenesis was affected by vegetable tannin and syntan water extracts (VTWE and STWE) at levels >or=1mg/L. Developmental defects were significantly decreased at VTWE and STWE levels of 0.1 and 0.3mg/L when control cultures displayed suboptimal quality, i.e. <70% "viable" (normal or retarded) larvae. Fertilization success of sea urchin sperm was increased up to 0.3 mg/L STWE or VTWE, then was inhibited by increasing tannin levels (1-30 mg/L). Offspring abnormalities, following sperm exposure to VTWE or STWE, showed the same shift from hormesis to toxicity. Cell growth bioassays in D. tertiolecta exposed to VTWE or STWE (0.1-30 mg/L) showed non-linear concentration-related toxicity. Novel criteria are suggested in defining control quality that should reveal hormetic effects.  相似文献   
4.
Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM.  相似文献   
5.
In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress.  相似文献   
6.
Cyanobacterial symbionts in the sponge Diacarnus erythraenus from the Red Sea were identified in both adult sponges and their larvae by 16S rDNA sequencing. A single cyanobacterial type was found in all samples. This cyanobacterial type is closely related to other sponge cyanobacterial symbionts. The cyanobacterial rDNA, together with the morphological analysis by electron and fluorescence microscopy, provided evidence for vertical transmission of the symbionts in this sponge. In addition, we show phenotypic plasticity of the symbionts inside the sponge, probably as a result of variability in light availability inside the sponge tissue. Finally, the reproduction of Diacarnus erythraenus is also described.Matan Oren, Laura Steindler have contributed equally to the work.  相似文献   
7.
While examining historical data on dissolved oxygen in the Canary Current area and the Central Atlantic Ocean (areas of activity of the UNDP/FAO Regional Fisheries Survey in West Africa), a quite different pattern of distribution was found in the dissolved oxygen/water temperature relationship in two adjacent Marsden squares (MS)1, 074 and 038. Not only were the dissolved oxygen values in MS 038 considerably lower than in MS 074 but, in the former square, the oxgen/temperature distribution showed 2 dissolved oxygen minima, the latter only 1 minimum. In MS 335, situated below the Equator, near the African coast, the oxygen/temperature distribution differs from the two former squares in that the dissolved oxygen value decreased steadily, and no oxygen minimum was found down to a depth where the water temperature was 6°C.  相似文献   
8.
Environmental Science and Pollution Research - Phytoremediation represents a natural method to remove contaminants from soil. The goal of this study was to investigate the potential of...  相似文献   
9.
The term "assisted phytoextraction" usually refers to the process of applying a chemical additive to contaminated soil in order to increase the metal uptake by crop plants. In this study three commercially available plant growth regulators (PGRs) based on cytokinins (CKs) were used to boost the assisted phytoextraction of Pb and Zn in contaminated soil collected from a former manufactured gas-plant site. The effects of EDTA treatment in soil and PGR treatment in leaves of Helianthus annuus were investigated in terms of dry weight biomass, Pb and Zn accumulation in the upper parts of the plants, Pb and Zn phytoextraction efficiency and transpiration rate. Metal solubility in soil and its subsequent accumulation in shoots were markedly enhanced by EDTA. The combined effects of EDTA and cytokine resulted in an increase in the Pb and Zn phytoextraction efficiency (up to 890% and 330%, respectively, compared to untreated plants) and up to a 50% increase in foliar transpiration. Our results indicate that exogenous PGRs based on CKs can positively assist the phytoextraction increasing the biomass production, the metal accumulation in shoots and the plant transpiration. The observed increase in biomass could be related to its action in stimulation of cell division and shoot initiation. On the other hand, the increase in metal accumulation in upper parts of plant could be related to both the role of PGRs in the enhancement of plant resistance to stress (as toxic metals) and the increase in transpiration rate, i.e. flux of water-soluble soil components and contaminants by the regulation of stomatal opening.  相似文献   
10.
The Dead Sea is a severely disturbed ecosystem, greatly damaged by anthropogenic intervention in its water balance. During the 20th century, the Dead Sea level dropped by more than 25 meters, and presently (2003) it is at about 416 meters below mean sea level. This negative water balance is mainly due to the diversion of water from the catchment area of the lake by Israel, Jordan and Syria. During the 2002 World Summit on Sustainable Development Israel and Jordan jointly announced their interest in saving the Dead Sea by constructing the “Peace Conduit” that will pipe water from the Red Sea to the Dead Sea. The inflow of seawater (or reject brine after desalinization) into the Dead Sea will have a major impact on its limnology, geochemistry and biology. During the filling stage, relatively diluted surface water will form and the rate of evaporation will therefore increase. Dilution of the surface water will most likely result in microbial blooming whose duration is not known, while the lower water layer is likely to develop reducing conditions, including bacterial sulfate reduction and presence of hydrogen sulfide (H2S). Mixing between the calcium-rich Dead Sea brine and the sulfate-rich seawater will result in gypsum precipitation (CaSO4⋅ 2H2O). Once the target level is reached, inflow will be outbalanced by evaporation and salinity of the surface water will increase due to accumulation of seawater-salts. The water column will re-mix when the density of the surface water will equal that of the lower water column. In spite of its large volume and high salinity relative to that of the inflowing water, over the long run the composition of this unique lake will change. Before a decision is made on the planning and construction of the Conduit, it is essential that the long term evolution and characteristics of the “renewed” Dead Sea be known and anticipated changes examined. Once decided upon, the planning and construction of the Conduit should be conducted so as to minimize possible negative impacts of seawater introduction on the Dead Sea. This can only be achieved through a thorough understanding of the expected changes in the limnological physical/chemical characteristics of the Dead Sea and its unique brine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号