首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
环保管理   6篇
综合类   6篇
污染及防治   4篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
Intensive agriculture, characterized by high inputs, has serious implications on the environment. Monitoring and evaluation of projects aiming at designing, testing and applying more sustainable practices require instruments to asses agronomic as well as environmental performance. Guidelines for Good Agricultural Practice (GAP) or Good Farming Practice (GFP) define sustainable practices but give limited insight into their environmental performance. Agri-environmental indicators (AEIs) provide information on environmental as well as agronomic performance, which allows them to serve as analytical instruments in research and provide thresholds for legislation purposes. Effective AEIs are quantifiable and scientifically sound, relevant, acceptable to target groups, easy to interpret and cost-effective. This paper discusses application of four AEIs for nitrogen (N) management in three Dutch research projects: 'De Marke', 'Cows and Opportunities' and 'Farming with a future'. 'De Marke' applied Nitrogen Surplus and Groundwater Nitrate Concentration in the design and testing of environmentally sound dairy systems. 'Cows and Opportunities', testing and disseminating dairy systems designed at 'De Marke', mainly applied Nitrogen Surplus, while 'Farming with a future' used Nitrogen Surplus, Groundwater Nitrate Concentration and Residual Mineral Soil Nitrogen to support arable farmers in complying with Dutch legislation (MINAS). Nitrogen Surplus is quantifiable, appealing and easy to interpret, but lacks scientific soundness or a good relationship with groundwater quality. Nitrogen Use Efficiency is sensitive to changes in management, while Residual Mineral Soil Nitrogen is appealing and cheap, but has difficulties in scaling. Groundwater Nitrate Concentration lacks clear rules for sampling, is labor consuming, expensive and mainly used in combination with other indicators. AEIs enhanced improvements in N management by facilitating (i) definition of project goals, (ii) design of desired systems, (iii) evaluation of applied systems and (iv) improving effective communication. AEI applications in other countries show a similar pattern as found in The Netherlands. Limitations to AEI application relate to inconsistencies between different indicators, heterogeneity of soil characteristics and linkages of N, carbon and water management. AEIs should be applied in an integrated evaluation, at a scale that reflects the farm's spatial variability. Simple AEIs like Nitrogen Surplus should be supported by other indicators and/or model calculations. The paper concludes that AEIs proved their value in design, implementation and testing of farming systems, but they should be used with care, always keeping in mind that indicators are simplifications of complex and variable processes.  相似文献   
3.
Farm nutrient management has been identified as one of the most important factors determining the economic and environmental performance of dairy cattle (Bos taurus) farming systems. Given the environmental problems associated with dairy farms, such as emissions of greenhouse gases (GHG), and the complex interaction between farm management, environment and genetics, there is a need to develop robust tools which enable scientists and policy makers to study all these interactions. This paper describes the development of a simple model called NUTGRANJA 2.0 to evaluate GHG emissions and nitrogen (N) and phosphorus (P) losses from dairy farms. NUTGRANJA 2.0 is an empirical mass-balance model developed in order to simulate the main transfers and flows of N and P through the different stages of the dairy farm management. A model sensitivity test was carried out to explore some of the sensitivities of the model in relation to the simulation of GHG and N emissions. This test indicated that both management (e.g. milk yield per cow, annual fertiliser N rate) and site-specific factors (e.g. % clover (Trifolium) in the sward, soil type, and % land slope) had a large effect on most of the model state variables studied (e.g. GHG and N losses).  相似文献   
4.
粮食生产中的养分管理:实现农业经济与环境目标   总被引:1,自引:0,他引:1  
在过去一个世纪中,管理的概念已经发生了很大变化.今天,管理已经被认为是"实现目标的专门活动".管理技术是决定农业生态系统经济和环境行为的一个最重要的因素.养分管理是"为实现农业经济和环境目标的养分管理,"它需要对养分循环、小区和农场特定的指导方针和技术,通常是直接指导的准确认识.特别是在包括农作物和家畜的复合农场系统,这些活动是多样化而复杂的.为了达到有效性,经济和环境目标必须是连贯的、灵活的和可操作的.同样,在策略、战术和实践层面上,它们也必须是被详细阐明和可以定量完成.本文应用来自波兰和荷兰的农场数据资料,展示反映了两国政府提供政策和措施所产生的经济激励作用会怎样通过集约化管理的复合农场系统两个因素中的其一改善养分利用的效率.  相似文献   
5.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   
6.

Tropical peatlands in the Peruvian Amazon exhibit high densities of Mauritia flexuosa palms, which are often cut instead of being climbed for collecting their fruits. This is an important type of forest degradation in the region that could lead to changes in the structure and composition of the forest, quality and quantity of inputs to the peat, soil properties, and greenhouse gas (GHG) fluxes. We studied peat and litterfall characteristics along a forest degradation gradient that included an intact site, a moderately degraded site, and a heavily degraded site. To understand underlying factors driving GHG emissions, we examined the response of in vitro soil microbial GHG emissions to soil moisture variation, and we tested the potential of pneumatophores to conduct GHGs in situ. The soil phosphorus and carbon content and carbon-to-nitrogen ratio as well as the litterfall nitrogen content and carbon-to-nitrogen ratio were significantly affected by forest degradation. Soils from the degraded sites consistently produced more carbon dioxide (CO2) than soils from the intact site during in vitro incubations. The response of CO2 production to changes in water-filled pore space (WFPS) followed a cubic polynomial relationship with maxima at 60–70% at the three sites. Methane (CH4) was produced in limited amounts and exclusively under water-saturated conditions. There was no significant response of nitrous oxide (N2O) emissions to WFPS variation. Lastly, the density of pneumatophore decreased drastically as the result of forest degradation and was positively correlated to in situ CH4 emissions. We conclude that recurrent M. flexuosa harvesting could result in a significant increase of in situ CO2 fluxes and a simultaneous decrease in CH4 emissions via pneumatophores. These changes might alter long-term carbon and GHG balances of the peat, and the role of these ecosystems for climate change mitigation, which stresses the need for their protection.

  相似文献   
7.
Phosphorus management in Europe in a changing world   总被引:2,自引:0,他引:2  
Food production in Europe is dependent on imported phosphorus (P) fertilizers, but P use is inefficient and losses to the environment high. Here, we discuss possible solutions by changes in P management. We argue that not only the use of P fertilizers and P additives in feed could be reduced by fine-tuning fertilization and feeding to actual nutrient requirements, but also P from waste has to be completely recovered and recycled in order to close the P balance of Europe regionally and become less dependent on the availability of P-rock reserves. Finally, climate-smart P management measures are needed, to reduce the expected deterioration of surface water quality resulting from climate-change-induced P loss.  相似文献   
8.
Stewardship to tackle global phosphorus inefficiency: The case of Europe   总被引:3,自引:0,他引:3  
The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R stewardship (Re-align P inputs, Reduce P losses, Recycle P in bioresources, Recover P in wastes, and Redefine P in food systems) to help identify and deliver a range of integrated, cost-effective, and feasible technological innovations to improve P use efficiency in society and reduce Europe’s dependence on P imports. Their combined adoption facilitated by interactive policies, co-operation between upstream and downstream stakeholders (researchers, investors, producers, distributors, and consumers), and more harmonized approaches to P accounting would maximize the resource and environmental benefits and help deliver a more competitive, circular, and sustainable European economy. The case of Europe provides a blueprint for global P stewardship.  相似文献   
9.
Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.  相似文献   
10.
Oenema O  Pietrzak S 《Ambio》2002,31(2):159-168
The notion of management has undergone many changes during the past century. Nowadays, management is perceived as "specialized activity to achieve targets." Skill in management is the single most important factor determining the economic and environmental performance of agroecosystems. Nutrient management is "management of nutrients to achieve agronomic and environmental targets;" it requires proper understanding of nutrient cycling, site- and farm-specific guidelines and technology, and often direct coaching. These activities are diverse and complicated, especially in mixed farming systems that involve both crop and animal production. To be effective, economic and environmental targets must be coherent, flexible, and controllable. They also must be defined and implemented quantitatively at strategic, tactical, and operational levels. Data from farms in Poland and The Netherlands are used to show how economic incentives, provided through governmental policies and measures in both countries, can improve nutrient-use efficiency by a factor of 2 on many intensively managed mixed farming systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号