首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
综合类   2篇
污染及防治   2篇
评价与监测   1篇
  2021年   2篇
  2018年   2篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Research on bioremediation of polycyclic aromatic hydrocarbons (PAHs) has established that several remediating microbial species are capable of degrading only low molecular weight (LMW)-PAHs, whereas high molecular weight (HMW)-PAHs are hardly degradable. In the present study, the efficiency of degradation of both LMW and HMW-PAHs by cytochrome P450 monooxygenase (CYP) of microalgae was studied. CYP have a key role in the detoxification of xenobiotics. So far, the structure of CYP in microalgae is not predicted; the protein structure was constructed by molecular modelling in the current study using the available template of microalgal CYP. Modelled microalgae 3D structures were docked against 38 different PAH compounds, and the information regarding the interaction between protein and PAHs viz. binding sites along with mode of interactions was investigated. We report that CYP from the microalgae Haematococcus pluvialis and Parachlorella kessleri was found to possess broad oxidising capability towards both LMW and HMW-PAHs. P. kessleri showed a least value with extra precision glide score of ? 10.23 and glide energy of ? 23.48 kcal/mol. PAHs bind to CYP active sites at Lys 69, Trp 96, Gln 397 and Arg 398 through intermolecular hydrogen bonding. Also, study revealed that PAHs interacted with CYP active sites through intermolecular hydrogen bonding, hydrophobic bonding, π–π interactions and van der waals interactions. Thus, structural elucidation study confirms that microalgae Parachlorella kessleri have the capacity to remediate HMW more efficiently than other microorganisms. Our results provide a framework in understanding the structure and the possible binding sites of CYP protein for degradation of PAH and that could be a screening tool in identifying the phycoremediation potential.  相似文献   
2.
Environmental Science and Pollution Research - Valorisation of organic wastes to produce industrially relevant commodity products is a sustainable, cost-effective and viable alternative providing a...  相似文献   
3.
Environmental Science and Pollution Research - The primary focus of the present study was to synthesize CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan to...  相似文献   
4.
5.
This study assessed the effectiveness of three novel control technologies for particulate matter (PM) and volatile organic compound (VOC) removal from commercial meat cooking operations. All experiments were conducted using standardized procedures at University of California, Riverside''s commercial test cooking facility. PM mass emissions collected using South Coast Air Quality Management District (SCAQMD) Method 5.1, as well as a dilution tunnel-based PM method showed statistically significantly reductions for each control technology when compared to baseline testing (i.e., without a catalyst). Overall, particle number emissions decreased with the use of control technologies, with the exception of control technology 2 (CT2), which is a grease removal technology based on boundary layer momentum transfer (BLMT) theory. Particle size distributions were unimodal with CT2 resulting in higher particle number populations at lower particle diameters. Organic carbon was the dominant PM component (> 99%) for all experiments. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds and showed reductions with the application of the control technologies. Some reductions in mono-aromatic VOCs were also observed with CT2 and the electrostatic precipitator (ESP) CT3 compared to the baseline testing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号