首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   10篇
  国内免费   2篇
安全科学   7篇
废物处理   19篇
环保管理   72篇
综合类   52篇
基础理论   102篇
环境理论   2篇
污染及防治   71篇
评价与监测   17篇
社会与环境   11篇
灾害及防治   11篇
  2023年   5篇
  2022年   8篇
  2021年   6篇
  2020年   10篇
  2019年   15篇
  2018年   10篇
  2017年   15篇
  2016年   13篇
  2015年   19篇
  2014年   14篇
  2013年   33篇
  2012年   13篇
  2011年   32篇
  2010年   15篇
  2009年   14篇
  2008年   22篇
  2007年   12篇
  2006年   12篇
  2005年   8篇
  2004年   12篇
  2003年   8篇
  2002年   10篇
  2001年   6篇
  2000年   11篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1969年   1篇
  1967年   1篇
排序方式: 共有364条查询结果,搜索用时 15 毫秒
1.
2.

Future levels of climate change depend not only on carbon emissions but also on carbon uptake by the land and the ocean. Here we are using the Earth system model (ESM1) version of the Australian Community Climate and Earth System Simulator (ACCESS) to explore the potential and impact of removing carbon dioxide (CO2) from the atmosphere through the climate and carbon cycle reversibility experiment. This experiment builds on the standard Coupled Model Intercomparison Project (CMIP) experiment, increasing CO2 at 1% per year until 4xCO2 is reached. The atmospheric CO2 levels are then decreased at the same rate which brings the CO2 back to pre-industrial levels. We then continue to run the model with constant CO2 for another 350 years. Our analysis focuses on the response of the land carbon cycle. We find that carbon stores are largely reversible at the global scale over the timescale of changing CO2. However, carbon stores continue to decrease after CO2 returns to its initial value, and the land loses another 40 Pg of carbon (PgC) with the largest change in the tropics. It takes about 300 years beyond the period of changing CO2 for the carbon stores to recover. Interestingly, we saw strong regional variations in the strength of the land response to changing CO2. Australia showed the largest increase/decrease in biomass carbon (about 40%) and the largest variability in productivity, which was strongly correlated with rainfall. This highlights the importance of assessing the regional response to understanding the processes underlying the response and the sensitivity of these processes within each model. This understanding will benefit future multi-model analyses of this reversibility experiment. It also illustrates more generally the potential to use Earth system model experiments as part of the evaluation of proposed applications of carbon dioxide removal (CDR) technologies. As such, we recommend that these types of modelling experiments be included when mitigation policies are developed.

  相似文献   
3.
A method using flow-injection, gas-diffusion, derivatisation and then fluorescent detection has been established for ammonium ion determination in seawater. The fluorescent derivative formed by reacting ortho-phthaldialdehyde (OPA) and sulfite with ammonia gives high sensitivity while removing potential interferences. This is required to measure the low concentrations of ammonium often seen in the open ocean. The experimental conditions (flow-rate, reagent concentrations, membrane configurations, etc.) were manipulated to improve performance. For a sample throughput of 30 samples h(-1), the limit of detection was 7 nM, the coefficient of variation was 5.7% at 800 nM, and the calibration curve was linear to at least 4 micromol L(-1). Interferences were minimised by a gaseous diffusion step. Volatile small molecular-weight amines as interferents were discriminated against by this method. They neither passed through the membrane as efficiently as ammonia, nor reacted as readily with OPA when sulfite was the reductant. Contamination by ammonia from laboratory and shipboard sources complicates application of the method to natural waters, especially measurement of low concentrations (<100 nM) in open-ocean waters. Steps to overcome contamination are described in detail. Some results are presented for ammonium determination in Southern Ocean and Huon Estuary (Tasmania) waters.  相似文献   
4.
The integrity of social insect colonies is maintained by members recognising and responding to the chemical cues present on the cuticle of any intruder. Nevertheless, myrmecophiles use chemical mimicry to gain access to these nests, and their mimetic signals may be acquired through biosynthesis or through contact with the hosts or their nest material. The cuticular hydrocarbon profile of the myrmecophilous salticid spider Cosmophasis bitaeniata closely resembles that of its host ant Oecophylla smaragdina. Here, we show that the chemical resemblance of the spider does not arise through physical contact with the adult ants, but instead the spider acquires the cuticular hydrocarbons by eating the ant larvae. More significantly, we show that the variation in the cuticular hydrocarbon profiles of the spider depends upon the colony of origin of the ant larvae prey, rather than the parentage of the spider.  相似文献   
5.
6.
A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.  相似文献   
7.
8.
The Collaborative Forest Landscape Restoration Program (CFLRP) aims to expand the pace and scale of forest restoration on national forests in the United States. The program requires candidate projects to develop landscape-scale forest restoration proposals through a collaborative process and continue to collaborate throughout planning, implementation, and monitoring. Our comparative case analysis of the initial selected projects examines how existing collaborative groups draw on past experience of collaboration and the requirements of a new mandate to shape collaborative structures as they undertake CFLRP work. While mandating collaboration appears contrary to what is often defined as an informal and emergent process, mandates can encourage stakeholder engagement and renew commitment to overcome past conflict. Our findings also suggest that a collaborative mandate can lead to increased attention and scrutiny, prompting adjustments to collaborative process and structure. As such, mandating collaboration creates dynamic tensions between past experience and new requirements for collaborative practice.  相似文献   
9.
Brassica juncea, or Indian mustard, was grown in soil artificially contaminated with either a soluble salt, CdCl(2), at 186mg Cdkg(-1), or alternately an insoluble, basic salt, CdCO(3), at 90mg Cdkg(-1). These experiments study the range of Cd uptake by Indian mustard from conditions of very high Cd concentration in a soluble form to the other extreme with an insoluble Cd salt. After plants were established, four different chelating agents were applied. Chelating agents increased plant uptake of Cd from the CdCl(2) soil but did not significantly increase plant uptake of Cd from the CdCO(3) contaminated soil. Addition of ethylenediaminetetraacetic acid (EDTA) increased the plant concentration of Cd by almost 10-fold in soils contaminated with CdCl(2), with a concentration of 1283mg Cdkg(-1) in the dried EDTA-treated plants over a concentration of 131mg Cdkg(-1) in plants without added chelate. However, EDTA increased the aqueous solubility of Cd by 36 times over the soil matrix without added chelator, and thereby, increased the possibility of leaching. Other chelators used in both experiments were ethylenebis(oxyethylenenitrilo)tetraacetic acid, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid, and diethylenetriaminepentaacetic acid (DTPA) increasing Cd in plants to 1240, 962, and 437mg Cdkg(-1), respectively. The other chelating agents increased the solubility of Cd in the leachate but not to the extent of EDTA. Comparing all chelating agents studied, DTPA increased plant uptake in terms of Cd in dried plant concentration most relative to the solubility of complexed Cd in runoff water.  相似文献   
10.
Jonathan M. H. Green  Gemma R. Cranston  William J. Sutherland  Hannah R. Tranter  Sarah J. Bell  Tim G. Benton  Eva Blixt  Colm Bowe  Sarah Broadley  Andrew Brown  Chris Brown  Neil Burns  David Butler  Hannah Collins  Helen Crowley  Justin DeKoszmovszky  Les G. Firbank  Brett Fulford  Toby A. Gardner  Rosemary S. Hails  Sharla Halvorson  Michael Jack  Ben Kerrison  Lenny S. C. Koh  Steven C. Lang  Emily J. McKenzie  Pablo Monsivais  Timothy O’Riordan  Jeremy Osborn  Stephen Oswald  Emma Price Thomas  David Raffaelli  Belinda Reyers  Jagjit S. Srai  Bernardo B. N. Strassburg  David Webster  Ruth Welters  Gail Whiteman  James Wilsdon  Bhaskar Vira 《Sustainability Science》2017,12(2):319-331
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号