首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   2篇
基础理论   6篇
  2016年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
2.
A large proportion of ladybird beetle (Coleoptera: Coccinellidae) eggs are apparently infertile—they do not develop an embryo and are consumed by larvae hatching within the egg batch. The predicted benefits of egg consumption for larvae are empirically well supported. An important question, however, remains: are these eggs a maternal strategy to feed offspring (i.e., trophic eggs) or did egg eating evolve to exploit unavoidably infertile eggs? We investigated the adaptive value of infertile eggs in laboratory experiments with multicoloured Asian ladybirds (Harmonia axyridis). Female H. axyridis were assigned to low and high resource environments for brief intervals; we predicted that tactics to facilitate egg cannibalism, such as infertile egg production and hatching asynchrony, would be adopted in low food environments in which starvation risk for offspring is greater. We conducted two experiments in this manner that provided females with information about resource levels through prey feeding or scent. We also observed female oviposition patterns and tested for infertile egg distributions that departed from random. Females produced 56% more infertile eggs in the low vs. the high food treatment; however, hatching synchrony did not change. We consider a potential confound between information and nutrition state unlikely because ladybirds are well able to tolerate low food for 24 h, the duration of trials, and because females were in good condition when trials began. Results suggest that ladybirds use information from prey encounter to manipulate the proportion of trophic eggs in a manner consistent with the adaptive hypothesis, the first evidence of trophic egg plasticity in a non-eusocial insect.  相似文献   
3.
The link between individual habitat selection decisions (i.e., mechanism) and the resulting population distributions of dispersing organisms (i.e., outcome) has been little-studied in behavioural ecology. Here we consider density-dependent habitat (i.e., host) selection for an energy- and time-limited forager: the mountain pine beetle (Dendroctonus ponderosae Hopkins). We present a dynamic state variable model of individual beetle host selection behaviour, based on an individual’s energy state. Field data are incorporated into model parameterization which allows us to determine the effects of host availability (with respect to host size, quality, and vigour) on individuals’ decisions. Beetles choose larger trees with thicker phloem across a larger proportion of the state-space than smaller trees with thinner phloem, but accept lower quality trees more readily at low energy- and time-states. In addition, beetles make habitat selection decisions based on host availability, conspecific attack densities, and beetle distributions within a forest stand. This model provides a framework for the development of a spatial game model to examine the implications of these results for attack dynamics of beetle populations.  相似文献   
4.
Evolutionary and ecological transitions from carnivorous to omnivorous feeding may be constrained by the ability of the animal to cope with disparate types of foods, even if preadaptations for such behaviour exist. The omnivorous true bug, Dicyphus hesperus (Hemiptera: Miridae) requires both animals (small, soft-bodied insects) and plants in its diet and obtains the majority of its dietary and metabolic water from plant feeding. Serrations on the lateral margins of the mandibular stylets wear with age, and this wear is exacerbated when the insects feed on plants compared to those provided free water and no plants. D. hesperus that feed on plants attack fewer prey but consumed similar amounts of prey tissue compared to individuals that were provided free water. Although others have shown mandible wear for plant-chewing animals we show for the first time that plant feeding can impose similar wear on plant-piercing animals as well.  相似文献   
5.
6.
Fisher's theoretical prediction of equal investment in each sex for a panmictic population (The genetical theory of natural selection. Clarendon, Oxford, 1930) can be altered by a number of factors. For example, the sex ratio theory predicts variation in equal investment in each sex when the maternal fitness gains from increased investment differ between sexes. Changing sex allocation because of changing payoffs may result from different ecological situations, such as foraging conditions. We investigated the impact of foraging travel cost on relative investment in sons vs daughters. Field studies were carried out with the central-place-foraging leafcutter bee Megachile rotundata (Fabricius), which has smaller males than females. Therefore, less investment is required to produce a viable son compared with a daughter. We found that with increased flight distance to resources, females produced a greater proportion of sons. Females also invested fewer resources in individual sons and daughters and produced fewer offspring with increased flight distance.  相似文献   
7.
Male pine engravers, Ips pini (Coleoptera: Scolytidae), assist their mates during reproduction by removing the debris that accumulates while females excavate oviposition tunnels in the phloem tissue of host tree bark. Although duration of paternal care and male reproductive success are positively correlated, large males leave their mates and brood sooner than small males. We address two hypotheses to explain the earlier departure of larger males from their breeding galleries: (1) females oviposit most rapidly when paired with large males, thereby reducing the length of time that paternal care increases male reproductive success, (2) larger males have better prospects for future reproduction, and thus leave their galleries in search of new breeding opportunities sooner than smaller males. Contrary to the first hypothesis, when females were paired either with large or small males, there was no effect of male size on their rate of oviposition. Consistent with the second hypothesis, males that initiated breeding galleries were larger than males from the general population. In addition, large males flew farther and faster on flight mills than small males, which may indicate that large males have an advantage in locating suitable breeding sites. Thus, we suggest that large male pine engravers leave their galleries earlier than small males because large individuals have better prospects for future reproduction. Received: 30 November 1997 / Accepted after revision: 23 May 1998  相似文献   
8.
Despite the multitude of work on patch time allocation and the huge number of studies on patch choice in the face of danger, the patch leaving response of foragers perceiving cues of danger has received relatively little attention. We investigated the response of parasitoid insects to cues of danger both theoretically and experimentally. Using stochastic dynamic theory, we demonstrate that patch-leaving responses in response to the detection of danger should be seen as a dynamic decision that depends upon reproductive options on the current host patch and on alternative patches that might be found after leaving the current patch. Our theory predicts a sigmoidal response curve of parasitoids, where they should accept the danger and stay on the patch when patch quality is high and should increasingly avoid the risk and emigrate from the patch with decreasing patch quality and decreasing costs of traveling to an alternative host patch. Experiments with females of the drosophilid parasitoid Asobara tabida that were exposed to a puff of formic acid (a danger cue) at different times through their patch exploitation confirmed the theoretical predictions (i.e., a sigmoid response curve); however, the predicted curve was significantly steeper than observed. We discuss the impact of dynamic patch-exit decisions of individual foragers on population and community dynamics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号