首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   5篇
安全科学   15篇
废物处理   8篇
环保管理   16篇
综合类   35篇
基础理论   38篇
污染及防治   44篇
评价与监测   15篇
社会与环境   19篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   10篇
  2017年   1篇
  2016年   9篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   14篇
  2011年   12篇
  2010年   13篇
  2009年   8篇
  2008年   12篇
  2007年   10篇
  2006年   8篇
  2005年   9篇
  2004年   14篇
  2003年   9篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1987年   1篇
  1985年   2篇
  1981年   1篇
  1978年   1篇
  1967年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
1.
Application of microbial hot spots enhances pesticide degradation in soils   总被引:1,自引:0,他引:1  
Through transfer of an active, isoproturon degrading microbial community, pesticide mineralization could be successfully enhanced in various soils under laboratory and outdoor conditions. The microbes, extracted from a soil having high native ability to mineralize this chemical, were established on expanded clay particles and distributed to various soils in the form of microbial "hot spots". Both, diffusion controlled isoproturon mass flow towards these "hot spots" (6microg d(-1)) as well as microbial ability to mineralize the herbicide (approximately 5microg d(-1)) were identified as the main processes enabling a multiple augmentation of the native isoproturon mineralization even in soils with heavy metal contamination. Soil pH-value appears to exert an important effect on the sustainability of this process.  相似文献   
2.
Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world’s largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.  相似文献   
3.
With rising concentrations of both atmospheric carbon dioxide (CO2) and tropospheric ozone (O3), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO2 and O3, singly and in combination, on the primary short-term stomatal response to CO2 concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO2 and/or O3 exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO2 concentration from current ambient level. The impairement of the stomatal CO2 response by O3 most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO2 may not hold for northern hardwood forests under concurrently rising tropospheric O3.  相似文献   
4.
Between the tenth and twentieth century the population of Paris city increased from a few thousand to near 10 million inhabitants. In response to the growing urban demand during this period, the agrarian systems of the surrounding rural areas tremendously increased their potential for commercial export of agricultural products, made possible by a surplus of agricultural production over local consumption by humans and livestock in these areas. Expressed in terms of nitrogen, the potential for export increased from about 60 kg N/km2/year of rural territory in the Middle Ages, to more than 5,000 kg N/km2/year from modern agriculture. As a result of the balance between urban population growth and rural productivity, the rural area required to supply Paris (i.e. its food-print) did not change substantially for several centuries, remaining at the size of the Seine watershed surrounding the city (around 60,000 km2). The theoretical estimate of the size of the supplying hinterland at the end of the eighteenth century is confirmed by the figures deduced from the analysis of the historical city toll data (octroi). During the second half of the twentieth century, the ‘food-print’ of Paris reduced in size, owing to an unprecedented increase in the potential for commercial export associated with modern agricultural systems based on chemical N fertilization. We argue that analysing the capacity of territories to satisfy the demand for nitrogen-containing food products of local or distant urban population and markets might provide new and useful insights when assessing world food resource allocation in the context of increasing population and urbanization.  相似文献   
5.
Flows of chemical substances need to be managed in a sustainable way. Sustainable development as a whole and the sustainable management of substance flows in particular are both time issues. These include the importance of the dynamics of substance flows and the way these interconnect with the use of resources, the avoidance of environmental pollution, and their effects on health and food production. Another prerequisite for the proper management of substance flows is justice within and between generations. This requires a systematic approach and a systematic analysis of the issues as well as of the actions to be taken. One tool for such a systematic approach is temporal analysis. It brings the temporal aspects of the substances themselves and of their intended use, as well as factors affecting the stakeholders, such as decision makers, producers and consumers, into focus. In the past, timing factors were rarely taken into account. Knowledge of the temporal dynamics of substance flows and their resultant outcomes, as well as of their interaction with ecological, economic and social systems, is a basic requirement for successful substance flow management. The need to include temporal aspects into substance flow management and how to do so is outlined here. Included are not only politicians but also practitioners and scientists who must explicitly take into account adequate time scales, points in time, breaks and other forms of time in planning and acting.  相似文献   
6.
Several lysimeter scenarios and approaches exist to study the fate of agro-chemicals or contaminants from deposition in soil columns. In many systems just transport and leaching of the parent compound is followed, in some systems the leaching and transport of the metabolites is investigated as well. In more sophisticated lysimeter systems the volatilization and also the mineralization of the applied chemicals can be additionally monitored. Depending on the lysimeter system used and on the fact whether the applied chemicals are 14C-labeled or not, different results and various interpretations of the results might be achieved. Different lysimeter systems are described in this paper and a real dataset of a specific lysimeter experiment was transferred and evaluated in a virtual approach in the different lysimeter systems in order to show the advantages and disadvantages of the various systems.  相似文献   
7.
There is evidence that degradation of pesticides in simple laboratory systems may differ from that in the field, but it is not clear which of the simplifications inherent in laboratory studies present serious shortcomings. Laboratory experiments evaluated several simplifying assumptions for a clay loam soil and contrasting pesticides. Degradation of cyanazine [2-(4-chloro-6-ethylamino-1,3,5-triazin-2-ylamino)-2-methylpropiononitrile] and bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] at fluctuating temperature and moisture was predicted reasonably well based on parameters derived from degradation under constant conditions. There was a tendency for slower degradation of cyanazine and bentazone in soil aggregates of 3 to 5 mm in diameter (DT50 at 15 degrees C and 40% maximum water holding capacity of 25.1 and 58.2 d, where DT50 is the time for 50% decline of the initial pesticide concentration) than in soil sieved to <3 mm (DT50 of 19.1 and 37.6 d), but the differences were not significant for most datasets. Degradation of cyanazine, isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea], and chlorotoluron [3-(3-chloro-p-tolyl)-1,1-dimethylurea] was measured in soil amended with different amounts of lignin. The effect of lignin on degradation was small despite considerable differences in sorption. The DT50 values of cyanazine, isoproturon, and chlorotoluron were 16.2, 18.6, and 33.0 d, respectively, in soil without lignin and 19.0, 23.4, and 34.6 d, respectively, in soil amended with 2% lignin. Degradation of bentazone and cyanazine in repacked soil columns was similar under static and flow conditions with 50.1 and 47.2% of applied bentazone and 74.7 and 73.6% of applied cyanazine, respectively, degraded within 20 d of application. Thus, the assumptions underpinning laboratory to field extrapolation tested here were considered to hold for our experimental system. Additional work is required before general conclusions can be drawn.  相似文献   
8.
Composting has emerged as a valuable route for the disposal of urban waste, with the prospect of applying composts on arable fields as organic amendments. Proper management of urban waste composts (UWCs) requires a capacity to predict their effects on carbon and nitrogen dynamics in the field, an issue in which simulation models are expected to play a prominent role. However, the parameterization of soil organic amendments within such models generally requires laboratory incubation data. Here, we evaluated the benefit of using a biochemical index based on Van Soest organic matter fractions to parameterize a deterministic model of soil C and N dynamics, NCSOIL, as compared with a standard alternative based on laboratory incubation data. The data included C mineralization and inorganic N dynamics in samples of a silt loam soil (Typic Hapludalf) mixed with various types of UWC and farmyard manure. NCSOIL successfully predicted the various nitrogen mineralization-immobilization patterns observed, but underestimated CO(2) release by 10 to 30% with the less stable amendments. The parameterization based on the biochemical index achieved a prediction error significantly larger than the standard parameterization in only 10% of the tested cases, and provided an acceptable fit to experimental data. The decomposition rates and C to N ratios of compost organic matter varied chiefly according to the type of waste processed. However, 62 to 66% of their variance could be explained by the biochemical index. We thus suggest using the latter to parameterize organic amendments in C and N models as a substitute for time-consuming laboratory incubations.  相似文献   
9.
Literature data on numerical values obtained for the parameters of the two most popular models for simulating the migration of radionuclides in undisturbed soils have been compiled and evaluated statistically. Due to restrictions on the applicability of compartmental models, the convection–dispersion equation and its parameter values should be preferred. For radiocaesium, recommended values are derived for its effective convection velocity and dispersion coefficient. Data deficiencies still exist for radionuclides other than caesium and for soils of non-temperate environments.  相似文献   
10.
This paper examines the role of affect as a linking mechanism between experiences at work (perceived prosocial impact and situational constraints) and two distinct components of proactive work behavior (issue identification and implementation). Based on a dual‐tuning perspective, we argue that both positive affect and negative affect can be beneficial for proactive work behavior. Multi‐level path analysis using daily‐survey data from 153 employees showed that perceived prosocial impact predicted positive affect and that situational constraints as a typical hindrance stressor predicted negative affect. Negative affect, in turn, predicted issue identification, and positive affect predicted implementation. Overall, our study suggests that both positive and negative affects can be valuable in the organizational context by contributing to distinct components of proactive behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号