首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
综合类   7篇
基础理论   3篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Echolocating bats adjust the time–frequency structure such as sweep rate and pulse interval of their sonar calls when they move from open space to vegetation-dense environments. Emitted call intensity is equally important for echolocation, but adjustment of signal intensity to different habitats has never been systematically studied in any bat species. To address this question, we recorded sonar calls of the Neotropical trawling insectivorous bat Macrophyllum macrophyllum (Phyllostomidae) at three sites with different obstacle densities (clutter). We found a clear correlation between emitted intensity and degree of clutter, with intensity proportional to decreasing clutter. In highly cluttered, semicluttered, and open spaces, M. macrophyllum emitted calls with mean source levels (sound pressure level (SPL) 10 cm from the bat’s mouth) of 100, 105, and 111 dB SPL root mean square (rms), respectively. To our knowledge, this is the first documentation of dynamic intensity adjustments in bats. Phyllostomid bats were previously considered silent, but the 111-dB SPL rms emitted by free-ranging M. macrophyllum in open space is comparable to output in aerial insectivorous bats from other families. Our results suggest that the acoustic constraints of habitats are better predictors of call intensity than phylogeny and therefore likely to be major drivers shaping the sonar system of bats in the course of evolution.  相似文献   
4.
We wish to thank I. Dadour for help with finding the moths. The audiogram recordings were done in the lab of W. Bailey at the University of Western Australia, Perth, and we thank for help with the setup. The study was supported by grants from The Danish Natural Science Research Council and The National Sciences and Engineering Council of Canada.  相似文献   
5.
6.
7.
Summary The echolocation and hunting behavior of two very small bats, Craseonycteris thonglongyai (Hill) and Myotis siligorensis (Horsfield), from Thailand, were investigated using multiflash photographs, video, and high-speed tape recordings with a microphone array that allowed determination of distance and direction to the bats. C. thonglongyai is the world's smallest mammal and M. siligorensis is only slightly larger. Both bats hunted insects in open areas. The search signals of C. thonglongyai were 3.5 ms long multiharmonic constant frequency (CF) signals with a prominent second harmonic at 73 kHz repeated at around 22 Hz. The band width (BW) of the short terminal frequency modulated (FM) sweep increased during the very short approach phase. In the final buzz the CF component disappeared, the duration decreased to 0.2 ms, and the repetition rate increased to 215 Hz (Figs. 2, 3, 4). There was no drop in frequency in the buzz. The video recordings of C. thonglongyai indicated that it seizes insects directly with the mouth (Fig. 1). M. siligorensis produced 5.4 ms long CF search signals at 66 kHz. The repetition rate was around 13 Hz. In the approach phase an initial broad band FM sweep was added. The buzz consisted of two phases, buzz I and buzz II. Buzz 11 was characterized by short cry durations (around 0.3 ms), a constant high repetition rate (185 Hz), a distinct drop in frequency, and a prominent second harmonic (Figs. 5, 6, 7). The drop in frequency, apparently typical of vespertilionid bats, has been explained by physiological limitations in sound production. However, C. thonglongyai produced very short signals at very high repetition rates without any frequency drop. The drop may be of adaptive value since it enables M. siligorensis to produce very short signals with high sweep rates. The drop moves the pronounced second harmonic into the frequency range of most interest to the bat (Fig. 7D). The sweep rate in this frequency range may now increase to twice the maximum rate that the vocal cords can produce directly. C. thonglongyai and M. siligorensis belong to different superfamilies, Emballonuroidea and Vespertilionoidea, respectively. In spite of their phylogenetic distance they produce strikingly similar search signals of narrow BW around 70 kHz with high source levels (100–115 dB peSPL peak equivalent sound pressure level). We argue that the signal resemblance is due to the similarity in size and hunting behavior of the two bats both hunting insects in open areas. High frequencies are heavily attenuated in air, but because of their small size the bats are restricted to hunting small insects which only reflect echoes at high frequencies. Thus, the emitted frequency is probably the lowest possible given the prey size. Hence, the two bats can only maximize the range of their sonar by decreasing the BW and emitting high intensities. Correspondence to: A. Surlykke  相似文献   
8.
9.
The shape of the sonar beam plays a crucial role in how echolocating bats perceive their surroundings. Signal design may thus be adapted to optimize beam shape to a given context. Studies suggest that this is indeed true for vespertilionid bats, but little is known from the remaining 16 families of echolocating bats. We investigated the echolocation beam shape of two species of emballonurid bats, Cormura brevirostris and Saccopteryx bilineata, while they navigated a large outdoor flight cage on Barro Colorado Island, Panama. C. brevirostris emitted more directional signals than did S. bilineata. The difference in directionality was due to a markedly different energy distribution in the calls. C. brevirostris emitted two call types, a multiharmonic shallowly frequency-modulated call and a multiharmonic sweep, both with most energy in the fifth harmonic around 68?kHz. S. bilineata emitted only one call type, multiharmonic shallowly frequency-modulated calls with most energy in the second harmonic (~46?kHz). When comparing same harmonic number, the directionality of the calls of the two bat species was nearly identical. However, the difference in energy distribution in the calls made the signals emitted by C. brevirostris more directional overall than those emitted by S. bilineata. We hypothesize that the upward shift in frequency exhibited by C. brevirostris serves to increase directionality, in order to generate a less cluttered auditory scene. The study indicates that emballonurid bats are forced to adjust their relative harmonic energy instead of adjusting the fundamental frequency, as the vespertilionids do, presumably due to a less flexible sound production.  相似文献   
10.
Although sex pheromone communication in the genus Ostrinia (Lepidoptera: Crambidae) has been studied intensively, acoustic communication in this genus has not been explored. In this study, we report that male-produced ultrasound serves as a courtship song in the Asian corn borer moth, O. furnacalis. Upon landing close to a pheromone-releasing female, a male showed a series of courtship behaviors involving emission of ultrasound. The sounds were produced when the wings were vibrated quickly in an upright position. The male song was composed of chirps, i.e., groups of pulses (duration of a chirp = 58.9 ms, 8.8 pulses/chirp), with a broadband frequency of 25–100 kHz. In flight tunnel experiments, deaf and hearing females showed a significant difference in the incidence of three behavioral responses to courting males, i.e., immediate acceptance, acceptance after walking, and rejection. Deaf females showed more ‘rejection’ and less ‘acceptance after walking’ than hearing females, indicating that the detection of male-produced ultrasound plays an important role in the acceptance of a male. The findings are discussed in the context of exploitation of receiver bias and mate choice.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号