首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
综合类   3篇
基础理论   1篇
  2018年   1篇
  2014年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
采用溶胶凝胶法通过改变原料中铋铁配比合成了以铁酸铋为主相的催化剂粉体。利用定量X射线法分析了不同铋铁配比对铁酸铋合成过程中物相组成的影响。采用紫外-可见光谱表征了粉体的光吸收特性。研究了催化剂组成、光照时间以及催化剂用量对催化降解甲基橙性能的影响。结果表明:九水硝酸铁与五水硝酸铋热分解速率相差较大是引起铁酸铋粉体合成过程中产生杂相的原因。降低铋铁配比有利于铁酸铋相的形成,其中铋铁配比为0.90∶1的原料合成的复合催化剂粉体紫外光降解甲基橙效率最高。  相似文献   
2.
主要通过浸没式平板膜生物反应器的膜污染阻力分布和膜表面的污染特性来分析波纹微通道湍流促进器减缓浸没式平板膜生物反应器的膜污染效果.结果表明,波纹微通道湍流促进器有效地降低了总阻力Rt,降低率达到68.01%,其中的Rrf、Rc和Rp+Ra分别降低54.20%、87.98%和84.00%;滤饼层厚度、有机和无机污染成分都减少,且污染层更易去除.综合膜污染阻力分布和膜表面污染物表征结果从扰流作用强化机理、逆扩散机理、絮凝机理和微孔强化过滤机理四个方面分析了波纹微通道湍流促进器减缓浸没式平板膜生物反应器膜污染的效果.  相似文献   
3.
为了探索Fe3 催化氧化S(Ⅳ)的反应动力学规律,实验考察了pH、Fe3 浓度、S(Ⅳ)浓度、温度对反应动力学的影响.结果表明,Fe3 催化氧化S(Ⅳ)过程中动力学控制步骤为Fe2 的氧化,且pH在0~3范围内,氧化速率随着H 浓度的升高而降低;Fe3 浓度为0~0.01 mol·L-1时,氧化速率随Fe3 浓度的增加而加快,继续增加Fe3 浓度,氧化速率没有明显变化;S(Ⅳ)浓度为0~0.1 mol·L-1时,氧化速率随S(Ⅳ)浓度的增加而加快.由实验数据得到了氧化速率公式.反应速率在20~40 ℃范围内随温度升高而加快,反应活化能约为13kJ·mol-1.在实验基础上推测反应为自由基链反应机理.  相似文献   
4.
酸性条件下,借助过渡金属的催化氧化性,可以将烟气中的SO_2转化为S(Ⅳ),以Fe~(2 )为能源,在繁殖过程中不断将Fe~(2 )转化为Fe~(3 )的T.f菌(氧化亚铁硫杆菌)引入脱硫吸收液以维持Fe~(3 )浓度,从而获得较高的脱硫效率.对T.f菌的驯化以及微量营养物质的加入,是T.f菌发挥其功效的关键.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号