首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
综合类   2篇
基础理论   7篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   3篇
  2009年   1篇
  1959年   2篇
排序方式: 共有9条查询结果,搜索用时 14 毫秒
1
1.
2.
Environmental Fluid Mechanics - Stratification effects induced by density differences between the incoming flows are investigated at a medium-size stream confluence with a highly discordant bed....  相似文献   
3.
4.
The exchange of dissolved matter between a straight open channel and a series of shallow embayments present at one of its sides is investigated using large eddy simulation (LES). The direct link between the mechanism of mass exchange and the dynamics of coherent structures is demonstrated. It is shown that for the geometrical configuration considered in the present study, the mass exchange process is very non-uniform over the depth in the vicinity of the channel–embayment interface. Most of the contaminant is ejected from the embayments close to the free surface. The amount of contaminant re-entrained into the embayments situated downstream of the one in which contaminant was introduced is quantified. The mass exchange coefficient predicted by LES does not vary significantly with the embayment rank and is in very good agreement with the one predicted by the model proposed by Weitbrecht et al. (J Hydraul Eng 134(2):173–183, 2008) based on the value of a dimensionless morphometric groyne-field parameter. Field experiments were purposely performed in a natural stream with embayments whose length over width ratios were close to the ratio in the LES study. The concentration fields predicted by LES are compared with video-records of colored dye used to visualize the mass exchange in the field experiment. It is shown that, for both LES and the field experiment, the dominant passage frequency of the eddies inside the interfacial mixing layer is well predicted by the analytical model of Sukhodolov and Sukhodolova (in: Cowen et al (eds) Hydraulic measurements & experimental methods. Proceedings of international conference, Lake Placid, USA, pp 172–177, 2007). The model is then used to scale the time in the LES animations and field video-records showing the temporal evolution of the concentration field. The results of the comparison indicate several similarities in the mixing process, despite the differences in the bathymetry and the large difference in the Reynolds number between LES and the field experiment. This proves the usefulness of performing detailed LES and laboratory studies in well-controlled environments to understand mass-exchange processes around river groyne fields.  相似文献   
5.
Eddy-resolving techniques have become a powerful tool to investigate shallow flows at both laboratory and field scale. In this paper several examples are given where high-resolution 3D numerical simulation are used to investigate the spatial development of mixing interfaces (MIs) forming in shallow environments like open channels with idealized and natural bathymetry where the bed friction plays a major role in the spatial development of the MI and associated large-scale turbulence. The focus is on the coherent structures forming within the MI and in its vicinity that control the momentum and mass exchange and heat transfer between the two sides of the MI. Examples include: (1) a MI developing in a flat-bed open channel downstream of a splitter wall separating two parallel fully-turbulent streams of different velocities, (2) a MI developing in a flat-bed open channel downstream of a 60 \(^{\circ }\) wedge separating two non-parallel fully turbulent streams of different velocities, (3) a MI developing downstream of a river confluence for cases with a large and, respectively, a small difference between the mean velocities of the two streams. Stratification effects due to unequal densities of the two incoming streams are also discussed, (4) a MI developing between a main rectangular straight channel and a series of shallow embayments present at one of the channel banks. Besides using available experimental data to demonstrate that eddy resolving techniques can accurately predict the structure of the MI and its development, the paper discusses new insights into the physics of these flows obtained based on the simulations. The paper also provides an overview of the main numerical approaches that can be used to simulate the unsteady dynamics of the large scale turbulence in flows containing shallow MIs.  相似文献   
6.
Environmental Fluid Mechanics - We report novel results of a numerical experiment designed for examining the basin-scale hydrodynamics that control the mass, momentum, and energy distribution in a...  相似文献   
7.
8.
9.
The paper reports results of large eddy simulations of lock exchange compositional gravity currents with a low volume of release advancing in a horizontal, long channel. The channel contains an array of spanwise-oriented square cylinders. The cylinders are uniformly distributed within the whole channel. The flow past the individual cylinders is resolved by the numerical simulation. The paper discusses how the structure and evolution of the current change with the main geometrical parameters of the flow (e.g., solid volume fraction, ratio between the initial height of the region containing lock fluid and the channel depth, ratio between the initial length and height of the region containing lock fluid) and the Reynolds number. Though in all cases with a sufficiently large solid volume fraction the current transitions to a drag-dominated regime, the value of the power law coefficient, α, describing the front position’s variation with time (x f  ~ t α , where t is the time measured from the removal of the lock gate) is different between full depth cases and partial depth cases. The paper also discusses how large eddy simulation (LES) results compare with findings based on shallow-water equations. In particular, LES results show that the values of α are not always equal to values predicted by shallow water theory for the limiting cases where the current height is comparable, or much smaller, than the channel depth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号