首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
环保管理   11篇
综合类   4篇
基础理论   28篇
污染及防治   6篇
评价与监测   1篇
社会与环境   2篇
灾害及防治   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
This paper examines the identity of Asian swamp buffalo (Bubalus bubalis) from different value orientations. Buffalo were introduced into Northern (Top End) Australia in the early nineteenth century. A team of transdisciplinary researchers, including an ethicist, has been engaged in field research on feral buffalo in Arnhem Land over the past three years. Using historical documents, literature review, field observations, interviews with key informants, and interaction with the Indigenous land owners, an understanding of the diverse views on the scientific, cultural, and economic significance of buffalo was obtained. While the diverse stakeholders in buffalo exploitation and management have historically delivered divergent value orientations on the nature of the human–buffalo relationship, we argue that over time there is the possibility of values and ethical convergence. Such convergence is possible via transdisciplinary and transcultural agreement on the value stances that constitute the construction of the being or identity of buffalo in the face of the overwhelming need to manage population density and gross numbers.  相似文献   
2.
3.
A component density feedback represents the effect of change in population size on single demographic rates, whereas an ensemble density feedback captures that effect on the overall growth rate of a population. Given that a population's growth rate is a synthesis of the interplay of all demographic rates operating in a population, we test the hypothesis that the strength of ensemble density feedback must augment with increasing strength of component density feedback, using long-term censuses of population size, fertility, and survival rates of 109 bird and mammal populations (97 species). We found that compensatory and depensatory component feedbacks were common (each detected in approximately 50% of the demographic rates). However, component feedback strength only explained <10% of the variation in ensemble feedback strength. To explain why, we illustrate the different sources of decoupling between component and ensemble feedbacks. We argue that the management of anthropogenic impacts on populations using component feedbacks alone is ill-advised, just as managing on the basis of ensemble feedbacks without a mechanistic understanding of the contributions made by its components and environmental variability can lead to suboptimal decisions.  相似文献   
4.
This paper provides a methodology for generating forest management plans, which explicitly maximize carbon (C) sequestration at the forest-landscape level. This paper takes advantage of concepts first presented in a paper by Meng et al. (2003; Mitigation Adaptation Strategies Global Change 8:371–403) by integrating C-sequestration objective functions in existing wood supply models. Carbon-stock calculations performed in WoodstockTM (RemSoft Inc.) are based on C yields generated from volume table data obtained from local Forest Development Survey plots and a series of wood volume-to-C content conversion factors specified in von Mirbach (2000). The approach is used to investigate the impact of three demonstration forest-management scenarios on the C budget in a 110,000 ha forest in south-central New Brunswick, Canada. Explicit demonstration scenarios addressed include (1) maximizing timber extraction either by clearcut or selection harvesting for greatest revenue generation, (2) maximizing total C storage in the forest landscape and in wood products generated from harvesting, and (3) maximizing C storage together with revenue generation. The level of clearcut harvesting was greatest for scenario 1 (≥15 × 104 m3 of wood and ≥943 ha of land per harvesting period), and least for scenario 2 (=0 m3 per harvesting period) where selection harvesting dominated. Because softwood saw logs were worth more than pulpwood ($60 m−3 vs. $40 m−3) and were strategic to the long-term storage of C, the production of softwood saw logs exceeded the production of pulpwood in all scenarios. Selection harvesting was generally the preferred harvesting method across scenarios. Only in scenario 1 did levels of clearcut harvesting occasionally exceed those of selection harvesting, mainly in the removal of old, dilapidated stands early in the simulation (i.e., during periods 1 through 3). Scenario 2 provided the greatest total C-storage increase over 80 years (i.e., 14 × 106 Mg C, or roughly 264 Mg ha−1) at a cost of $111 per Mg C due to lost revenues. Scenarios 3 and 1 produced reduced storage rates of roughly 9 × 106 Mg C and 3 × 106 Mg C, respectively; about 64% and 22% of the total, 80-year C storage calculated in scenario 2. The bulk of the C in scenario 2 was stored in the forest, amounting to about 76% of the total C sequestered.  相似文献   
5.
Schoonen M  Smirnov A  Cohn C 《Ambio》2004,33(8):539-551
The possible role of minerals in prebiotic chemistry is discussed. Reactions involving the transformation of inorganic forms of the biogenic elements into simple organic molecules are emphasized. Three central issues are presented in detail: i) the types of reactions minerals could possibly have promoted; ii) the availability of minerals with catalytic potential on early Earth; and iii) the available research strategy and methods to evaluate the roles minerals may have played in prebiotic chemistry on early Earth.  相似文献   
6.
7.
Globally, norovirus is the most common gastroenteritis causing pathogen. Annually, norovirus causes 685 million cases of acute gastroenteritis and 200,000  相似文献   
8.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   
9.
The physical factors that constrain the vertical foraging excursions of the keystone predator, the sea star Pisaster ochraceus, hold considerable interest because they indirectly shape the vivid patterns of zonation of rocky shore communities by impeding or enhancing the ability of P. ochraceus to traverse the intertidal zone. In this paper, we describe a study conducted in the Pacific Northwest of North America in which we examined, in the field and laboratory, the abiotic factors that can affect vertical excursions by P. ochraceus. Our field observations revealed that the extreme upward reach and average shore level height reached by P. ochraceus were significantly lower for daylight high tides than nocturnal high tides. Based on diver observations following a severe storm, it would also appear that these diurnal movements can be impeded by freshwater incursions into the intertidal zone; a regularly occurring event in the Pacific Northwest. As part of an experimental investigation into this phenomenon, we observed that sea stars maintained in tall cylindrical aquaria, without tidal flux, remained near the bottom during daylight and moved to the top of the column at night, suggesting that photoperiod alone can influence the cycle of vertical movement. Adding a freshwater layer to the aquaria restricted these vertical excursions. Our results suggest that on rocky coastlines susceptible to fresh water incursions, the suppression of foraging may be an important factor in the spatial and temporal variation in the intensity of predation. Furthermore, given the relative increase in frequency and intensity of freshwater incursions in the Pacific Northwest and the intolerance of P. ochraceus to lowered salinity, there is the long-term potential to significantly alter patterns of species zonation in this essential marine habitat.  相似文献   
10.
Atoll island communities rely on rainwater catchment systems (RWCS) as a primary method of storing freshwater. However, stored freshwater can be depleted during times of drought, requiring importation of water to sustain community living. To maintain adequate water supply under future climatic conditions, the functioning of RWCS for atoll communities must be analyzed and optimal designs must be adopted. In this study, a quantitative analysis of stored daily water volumes is provided for atoll islands within the Federated States of Micronesia (FSM), with Nikahlap Island, Pakein Atoll, and a generic island in western FSM used as representative cases. Using a daily water balance model for the RWCS, baseline conditions are simulated for the 1997‐1999 time period, during which an intense El Niño‐induced drought occurred, and a sensitivity analysis is performed to quantify the influence of RWCS features on water system outputs, whereupon an optimal RWCS design using existing infrastructure is analyzed. Results indicate the strong influence of catchment area, system efficiency, and storage capacity on water volumes and the depletion of water during dry seasons and drought periods using current RWCS infrastructure. Adequate storage can be maintained during a major drought if unused RWCS features are employed and if minimal rationing is adopted. Study results provide water resource managers and government officials with valuable data for consideration in water security measures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号