首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2006年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The spatial development of a passive scalar plume is studied within the inhomogeneous turbulence of a boundary layer flow in a recirculating laboratory flume with a smooth bed. The source of the scalar is located flush with the bed, and the low-momentum source design is intended to simulate a diffusive-type scalar release. A weakly diffusive fluorescent dye is used as the scalar. Planar laser-induced fluorescence (PLIF) techniques were used to record the structure of the plume at a spatial resolution of 150 μm. The measured structure of the mean concentration field is compared to an analytical solution for shear-free, homogeneous turbulence. The laboratory plume exhibits spatial development in the mean concentration field that deviates from the self-similar behavior predicted by the analytical solution; this deviation is due to the mean shear and inhomogeneity of the turbulence. In particular, the influence of the viscous sublayer on the plume development is seen to be significant. Nonetheless, the analytical solution replicates some of the features seen in the laboratory plume, and the solution suggests methods of reducing the laboratory data even for cases where the results deviate from the analysis. We also examine the spatial development of the root-mean-square (rms) fluctuating concentration field, and use scalar probability density functions to examine the relationship between the mean and fluctuating concentrations.  相似文献   
2.
A variety of animals use olfactory appendages bearing arrays of chemosensory neurons to detect chemical signatures in the water or air around them. This study investigates how particular aspects of the design and behavior of such olfactory appendages on benthic aquatic animals affect the patterns of intercepted chemical signals in a turbulent odor plume. We use virtual olfactory `sensors' and `antennules' (arrays of sensors on olfactory appendages) to interrogate the concentration field from an experimental dataset of a scalar plume developing in a turbulent boundary layer. The aspects of the sensors that we vary are: (1) The spatial and temporal scales over which chemical signals arriving at the receptors of a sensor are averaged (e.g., by subsequent neural processing), and (2) the shape and orientation of a sensor with respect to ambient water flow. Our results indicate that changes in the spatial and temporal resolution of a sensor can dramatically alter its interception of the intermittency and variability of the scalar field in a plume. By comparing stationary antennules with those sweeping through the flow (as during antennule flicking by the spiny lobster, Panulirus argus), we show that flicking alters the frequency content of the scalar signal, and increases the likelihood that the antennule encounters peak events. Flicking also enables a long, slender (i.e., one-dimensional) antennule to intercept two-dimensional scalar patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号