首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
废物处理   3篇
环保管理   3篇
基础理论   3篇
污染及防治   2篇
  2021年   2篇
  2013年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Sustainable development goals are achievable through the installation of Material Recovery Facilities (MRFs) in certain solid waste management systems, especially those in rapidly expanding multi-district urban areas. MRFs are a cost-effective alternative when curbside recycling does not demonstrate long-term success. Previous capacity planning uses mixed integer programming optimization for the urban center of the city of San Antonio, Texas to establish that a publicly owned material recovery facility is preferable to a privatized facility. As a companion study, this analysis demonstrates that a MRF alleviates economic, political, and social pressures facing solid waste management under uncertainty. It explores the impact of uncertainty in decision alternatives in an urban environmental system. From this unique angle, waste generation, incidence of recyclables in the waste stream, routing distances, recycling participation, and other planning components are taken as intervals to expand upon previous deterministic integer-programming models. The information incorporated into the optimization objectives includes economic impacts for recycling income and cost components in waste management. The constraint set consists of mass balance, capacity limitation, recycling limitation, scale economy, conditionality, and relevant screening restrictions. Due to the fragmented data set, a grey integer programming modeling approach quantifies the consequences of inexact information as it propagates through the final solutions in the optimization process. The grey algorithm screens optimal shipping patterns and an ideal MRF location and capacity. Two case settings compare MRF selection policies where optimal solutions exemplify the value of grey programming in the context of integrated solid waste management.  相似文献   
2.
Solid waste management (SWM) facilities are crucial for environmental management and public health in urban regions. Due to the waste management hierarchy, one of the greatest challenges that organizations face today is to figure out how to diversify the treatment options, increase the reliability of infrastructure systems, and leverage the redistribution of waste streams among incineration, compost, recycling, and other facilities to their competitive advantage region wide. Systems analysis plays an important role for regionalization assessment of integrated SWM systems, leading to provide decision makers with break-through insights and risk-informed strategies. This paper aims to apply a minimax regret optimization analysis for improving SWM strategies in the Lower Rio Grande Valley (LRGV), an economically fast growing region in the US. Based on different environmental, economic, legal, and social conditions, event-based simulation in the first stage links estimated waste streams in major cities in LRGV with possible solid waste management alternatives. The optimization analysis in the second stage emphasizes the trade-offs and associated regret evaluation with respect to predetermined scenarios. Such optimization analyses with multiple criteria have featured notable successes, either by public or private efforts, in diverting recyclables, green waste, yard waste, and biosolids from the municipal solid waste streams to upcoming waste-to-energy, composting, and recycling facilities. Model outputs may link prescribed regret scenarios in decision making with various scales of regionalization policies. The insights drawn from the system-oriented, forward-looking, and preventative study can eventually help decision-makers and stakeholders gain a scientific understanding of the consequences of short-term and long-term decisions relating to sustainable SWM in the fast-growing US-Mexico borderland.  相似文献   
3.
Installing material recovery facilities (MRFs) in a solid waste management system could be a feasible alternative to achieve sustainable development goals in urban areas if current household and curbside recycling cannot prove successful in the long run. This paper addresses the optimal site selection and capacity planning for a MRF in conjunction with an optimal shipping strategy of solid waste streams in a multi-district urban region. Screening of material recovery and disposal capacity alternatives can be achieved in terms of economic feasibility, technology limitation, recycling potential, and site availability. The optimization objectives include economic impacts characterized by recycling income and cost components for waste management, while the constraint set consists of mass balance, capacity limitation, recycling limitation, scale economy, conditionality, and relevant screening constraints. A case study for the City of San Antonio, Texas (USA) presents a vivid example where scenario planning demonstrates the robustness and flexibility of this modeling analysis. It proves especially useful when determining MRF ownership structure. Each scenario experiences two case settings: (1) two MRF sites are proposed for selection and (2) a single MRF site is sought. Cost analysis confirms processing fees are not the driving force in the City's operation, but rather shipping cost. Sensitivity analysis solidifies the notion that significant public participation plays the most important role in minimizing solid waste management expenses.  相似文献   
4.
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   
5.
The Lower Rio Grande Valley (LRGV or Valley) in Texas, facing the big waste management challenge along the US-Mexico border today, is at the crossroads as a result of the rapid population growth, the scarcity of landfill space, the bi-nation's trade impacts, and the illusive goal of environmental sustainability. This paper offers a unique municipal solid waste investigation with regard to both physical and chemical characteristics leading to illuminate the necessary management policies with greater regional relevancy. With multiple sampling campaigns conducted during the spring of 2005, this study holistically summarizes the composition of solid waste, the statistical distribution patterns of key recyclable items, and the heating value in an uncertain environment. Research findings indicate that high fractions of plastics and paper in the waste stream imply a strong potential for energy recovery. Incineration options are thus bolstered by mildly high heating values across 10 cities in this region, which may lead to save land resources required for final disposal and increase electricity generation in the long run. Additional regression analyses further identify the correlation between recyclable items and heating value, which show that current recycling programs permit no obvious negative impacts on the incineration option. Final statistical hypothesis tests for both the Brownsville-Harlingen-San Benito and the McAllen-Edinburg-Mission metropolitan regions help foster consistent management strategies across the Valley regardless of the trivial differences of waste characteristics in between.  相似文献   
6.
Solid waste management (SWM) is at the forefront of environmental concerns in the Lower Rio Grande Valley (LRGV), South Texas. The complexity in SWM drives area decision makers to look for innovative and forward-looking solutions to address various waste management options. In decision analysis, it is not uncommon for decision makers to go by an option that may minimize the maximum regret when some determinant factors are vague, ambiguous, or unclear. This article presents an innovative optimization model using the grey mini-max regret (GMMR) integer programming algorithm to outline an optimal regional coordination of solid waste routing and possible landfill/incinerator construction under an uncertain environment. The LRGV is an ideal location to apply the GMMR model for SWM planning because of its constant urban expansion, dwindling landfill space, and insufficient data availability signifying the planning uncertainty combined with vagueness in decision-making. The results give local decision makers hedged sets of options that consider various forms of systematic and event-based uncertainty. By extending the dimension of decision-making, this may lead to identifying a variety of beneficial solutions with efficient waste routing and facility siting for the time frame of 2005 through 2010 in LRGV. The results show the ability of the GMMR model to open insightful scenario planning that can handle situational and data-driven uncertainty in a way that was previously unavailable. Research findings also indicate that the large capital investment of incineration facilities makes such an option less competitive among municipal options for landfills. It is evident that the investment from a municipal standpoint is out of the question, but possible public–private partnerships may alleviate this obstacle.  相似文献   
7.
In sexually promiscuous mammals, female reproductive effort is mainly expressed through gestation, lactation, and maternal care, whereas male reproductive effort is mainly manifested as mating effort. In this study, we investigated whether reproduction has significant survival costs for a seasonally breeding, sexually promiscuous species, the rhesus macaque, and whether these costs occur at different times of the year for females and males, namely in the birth and the mating season, respectively. The study was conducted with the rhesus macaque population on Cayo Santiago, Puerto Rico. Data on 7,402 births and 922 deaths over a 45-year period were analyzed. Births were concentrated between November and April, while conceptions occurred between May and October. As predicted, female mortality probability peaked in the birth season whereas male mortality probability peaked in the mating season. Furthermore, as the onset of the birth season gradually shifted over the years in relation to climatic changes, there was a concomitant shift in the seasonal peaks of male and female mortality. Taken together, our findings provide the first evidence of sex differences in the survival costs of reproduction in nonhuman primates and suggest that reproduction has significant fitness costs even in environments with abundant food and absence of predation.  相似文献   
8.
Decades of research and policy interventions on biodiversity have insufficiently addressed the dual issues of biodiversity degradation and social justice. New approaches are therefore needed. We devised a research and action agenda that calls for a collective task of revisiting biodiversity toward the goal of sustaining diverse and just futures for life on Earth. Revisiting biodiversity involves critically reflecting on past and present research, policy, and practice concerning biodiversity to inspire creative thinking about the future. The agenda was developed through a 2-year dialogue process that involved close to 300 experts from diverse disciplines and locations. This process was informed by social science insights that show biodiversity research and action is underpinned by choices about how problems are conceptualized. Recognizing knowledge, action, and ethics as inseparable, we synthesized a set of principles that help navigate the task of revisiting biodiversity. The agenda articulates 4 thematic areas for future research. First, researchers need to revisit biodiversity narratives by challenging conceptualizations that exclude diversity and entrench the separation of humans, cultures, economies, and societies from nature. Second, researchers should focus on the relationships between the Anthropocene, biodiversity, and culture by considering humanity and biodiversity as tied together in specific contexts. Third, researchers should focus on nature and economies by better accounting for the interacting structures of economic and financial systems as core drivers of biodiversity loss. Finally, researchers should enable transformative biodiversity research and action by reconfiguring relationships between human and nonhuman communities in and through science, policy, and practice. Revisiting biodiversity necessitates a renewed focus on dialogue among biodiversity communities and beyond that critically reflects on the past to channel research and action toward fostering just and diverse futures for human and nonhuman life on Earth.  相似文献   
9.
Environmental Geochemistry and Health - The aim of this study was to determine the influence of traffic density on air pollutant levels as well as to analyse the spatial and temporal distribution...  相似文献   
10.
Abstract

Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号