首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
综合类   1篇
基础理论   1篇
  2017年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Titanium dioxide photocatalysis for pharmaceutical wastewater treatment   总被引:1,自引:0,他引:1  
Heterogeneous photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a promising treatment technology for water purification. The effectiveness of this oxidation technology for the destruction of pharmaceuticals has also been demonstrated in numerous studies. This review highlights recent research on TiO2 photocatalytic treatment applied to the removal of selected pharmaceuticals. The discussions are tailored based on the therapeutic drug classes as the kinetics and mechanistic aspects are compound dependent. These classes of pharmaceuticals were chosen because of their environmental prevalence and potential adverse effects. Optimal operational conditions and degradation pathways vary with different pharmaceutical compounds. The main conclusion is that the use of TiO2 photocatalysis can be considered a state-of-the-art pharmaceutical wastewater treatment methodology. Further studies are, however, required to optimize the operating conditions for maximum degradation of multiple pharmaceuticals in wastewater under realistic conditions and on an industrial scale.  相似文献   
2.
The use of nanosized titanium dioxide(TiO_2) and zinc oxide(ZnO) in the suspension form during treatment makes the recovering and recycling of photocatalysts difficult.Hence,supported photocatalysts are preferred for practical water treatment applications.This study was conducted to investigate the efficiency of calcium alginate(CaAlg) beads that were immobilized with hybrid photocatalysts,TiO_2/ZnO to form TiO_2/ZnO-CaAlg.These immobilized beads,with three different mass ratios of TiO_2:ZnO(1:1,1:2,and 2:1) were used to remove Cu(Ⅱ) in aqueous solutions in the presence of ultraviolet light.These beads were subjected to three cycles of photocatalytic treatment with different initial Cu(Ⅱ) concentrations(10-80 ppm).EDX spectra have confirmed the inclusion of Ti and Zn on the surface of the CaAlg beads.Meanwhile,the surface morphology of the beads as determined using SEM,has indicated differences of before and after the photocatalytic treatment of Cu(Ⅱ).Among all three,the equivalent mass ratio TiO_2/ZnO-CaAlg beads have shown the best performance in removing Cu(Ⅱ) during all three recycling experiments.Those TiO_2/ZnO-CaAlg beads have also shown consistent removal of Cu,ranging from 7.14-52.0 ppm(first cycle) for initial concentrations of10-80 ppm.In comparison,bare CaAlg was only able to remove 6.9-48 ppm of similar initial Cu concentrations.Thus,the potential use of TiO_2/ZnO-CaAlg beads as environmentally friendly composite material can be further extended for heavy metal removal from contaminated water.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号