首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
环保管理   5篇
综合类   1篇
基础理论   1篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 875 毫秒
1
1.
Studies throughout Florida have shown smart controllers can substantially reduce irrigation under residential high‐water use conditions. However, successful promotion requires understanding the link between controller performance and the mechanisms by which they are adopted. This article compares irrigation water‐use and survey data collected from households installed with soil moisture sensor and evapotranspiration controllers. The study investigated whether the relative change in irrigation use between two years preceding and two years following installation was a reliable predictor of a homeowner's satisfaction with the device and likelihood of continuing to use it. Results indicated relative changes in irrigation use were only significantly associated with the quality of controller programming. Satisfaction with the controller was largely attributable to satisfaction with the appearance of the landscape and the perceived water‐saving effectiveness of the controller whereas the likelihood of its continued use was only significantly predicted by the level of technical knowledge regarding its functioning and whether or not challenges were experienced with it. Targeting homeowners with supplemental user‐friendly information may best support their long‐term adoption of smart controllers while providing irrigation contractors with training in implementation techniques would represent an integrated strategy for added reductions in residential outdoor water use.  相似文献   
2.
3.
4.
Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake.  相似文献   
5.
Environmental Management - Efforts to mitigate outdoor water use in Florida’s urban landscapes increasingly include promotion of regionally appropriate landscaping based on its documented...  相似文献   
6.
Global environmental changes are altering interactions among plant species, sometimes favoring invasive species. Here, we examine how a suite of five environmental factors, singly and in combination, can affect the success of a highly invasive plant. We introduced Centaurea solstitialis L. (yellow starthistle), which is considered by many to be California's most troublesome wildland weed, to grassland plots in the San Francisco Bay Area. These plots experienced ambient or elevated levels of warming, atmospheric CO2, precipitation, and nitrate deposition, and an accidental fire in the previous year created an additional treatment. Centaurea grew more than six times larger in response to elevated CO2, and, outside of the burned area, grew more than three times larger in response to nitrate deposition. In contrast, resident plants in the community responded less strongly (or did not respond) to these treatments. Interactive effects among treatments were rarely significant. Results from a parallel mesocosm experiment, while less dramatic, supported the pattern of results observed in the field. Taken together, our results suggest that ongoing environmental changes may dramatically increase Centaurea's prevalence in western North America.  相似文献   
7.
Monitoring of nitrate leaching in sandy soils: comparison of three methods   总被引:2,自引:0,他引:2  
Proper N fertilizer and irrigation management can reduce nitrate leaching while maintaining crop yield, which is critical to enhance the sustainability of vegetable production on soils with poor water and nutrient-holding capacities. This study evaluated different methods to measure nitrate leaching in mulched drip-irrigated zucchini, pepper, and tomato production systems. Fertigation rates were 145 and 217 kg N ha(-1) for zucchini; 192 and 288 kg N ha(-1) for pepper; and 208 and 312 kg N ha(-1) for tomato. Irrigation was either applied at a fixed daily rate or based on threshold values of soil moisture sensors placed in production beds. Ceramic suction cup lysimeters, subsurface drainage lysimeters and soil cores were used to access the interactive effects of N rate and irrigation management on N leaching. Irrigation treatments and N rate interaction effects on N leaching were significant for all crops. Applying N rates in excess of standard recommendations increased N leaching by 64, 59, and 32%, respectively, for pepper, tomato, and zucchini crops. Independent of the irrigation treatment or nitrogen rate, N leaching values measured from the ceramic cup lysimeter-based N leaching values were lower than the values from the drainage lysimeter and soil coring methods. However, overall nitrate concentration patterns were similar for all methods when the nitrate concentration and leached volume were relatively low.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号