首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   2篇
污染及防治   1篇
  2010年   3篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m−2 h−1 and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R2: 0.49-0.70) and laboratory (R2: 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments.  相似文献   
3.
Fen-bog succession is accompanied by strong increases of carbon accumulation rates. We tested the prevailing hypothesis that living Sphagna have extraordinarily high cation exchange capacity (CEC) and therefore acidify their environment by exchanging tissue-bound protons for basic cations in soil water. As Sphagnum invasion in a peatland usually coincides with succession from a brown moss-dominated alkaline fen to an acidic bog, the CEC of Sphagna is widely believed to play an important role in this acidification process. However, Sphagnum CEC has never been compared explicitly to that of a wide range of other bryophyte taxa. Whether high CEC directly leads to the ability to acidify the environment in situ also remains to be tested. We screened 20 predominant subarctic bryophyte species, including fen brown mosses and bog Sphagna for CEC, in situ soil water acidification capacity (AC), and peat acid neutralizing capacity (ANC). All these bryophyte species possessed substantial CEC, which was remarkably similar for brown mosses and Sphagna. This refutes the commonly accepted idea of living Sphagnum CEC being responsible for peatland acidification, as Sphagnum's ecological predecessors, brown mosses, can do the same job. Sphagnum AC was several times higher than that of other bryophytes, suggesting that CE (cation exchange) sites of Sphagna in situ are not saturated with basic cations, probably due to the virtual absence of these cations in the bog water. Together, these results suggest that Sphagna can not realize their CEC in bogs, while fen mosses can do so in fens. The fen peat ANC was 65% higher than bog ANC, indicating that acidity released by brown mosses in the CE process was neutralized, maintaining an alkaline environment. We propose two successional pathways indicating boundaries for a fen-bog shift with respect to bryophyte CEC. In neither of them is Sphagnum CE an important factor. We conclude that living Sphagnum CEC does not play any considerable role in the fen-bog shift. Alternatively, we propose that exclusively indirect effects of Sphagnum expansion such as peat accumulation and subsequent blocking of upward alkaline soil water transport are keys to the fen-bog succession and therefore for bog-associated carbon accumulation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号