首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础理论   3篇
污染及防治   1篇
  2022年   1篇
  2011年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Whole-body carbon (C), nitrogen (N) and phosphorus (P) content, and stable-isotope composition (13C:12C and 15N:14N), were followed during metamorphosis of bonefish (Albula sp.) larvae (leptocephali). Metamorphosing larvae depend entirely on endogenous carbon compounds (some of which contain N and P) as an energy source. Two fundamental questions are (1) Do the demands of extensive tissue remodeling during metamorphosis require the efficient retention of N and P during the catabolism of carbon compounds? (2) What effect does the lack of feeding have on stable-isotope composition? Our results showed that both C and N decreased by ~35 to 40%, reflecting the utilization of neutral lipid (triacylglycerols) and N-containing compounds (phosphatidylethanolamine and keratan sulfate glycosaminoglycan) as energy sources, and indicating that larvae have little or no capacity to retain N. Evidence suggested that collagen breakdown, measured as a loss of hydroxyproline content, also contributed to N loss. Stable-isotope ratios, expressed as 13C and 15N, showed no statistically significant differences in early and advanced metamorphosing larvae. In contrast to C and N, phosphorus was conserved during metamorphosis and most probably is utilized in the increased bone mineralization occurring in advanced larvae. We show, however, that advanced larvae are P-limited and that normal ossification is dependent upon a supply of exogenous P obtained after the resumption of feeding. The N:P ratio of 12.3 in early larvae decreased to 8.1 in advanced larvae owing to the conservation of P as N was lost. The mean 15N value in early metamorphic larvae (11.6‰) is consistent with results from other studies, and provides further support for the view that premetamorphic leptocephali feed at a very low trophic level.  相似文献   
2.
Boersma M  Elser JJ 《Ecology》2006,87(5):1325-1330
Nutritional imbalances are of great interest in the ecological stoichiometry literature, in which researchers have focused almost exclusively on cases where nutrients are available in low amounts relative to energy (carbon), and animal growth is impaired due to insufficient nutrient intake. Little attention has been given to situations where food elemental content is higher than the level that satisfies animal requirements. However, most animals are strongly homeostatic with respect to the elemental composition of their body; hence they must excrete the excess of elements that are not in short supply. To date, stoichiometric theory has assumed that excretion of superfluous elements does not come with a cost and, thus, that consumption of food with surplus nutrients does not impair performance. Here we challenge this assumption, based on a compilation of several examples involving food phosphorus content that show that the performance of a wide variety of animals decreases when supplied with food containing high concentrations of (potentially) limiting nutrients. We discuss possible mechanisms for this phenomenon, and suggest that animals most vulnerable to effects of high food nutrient content are those that normally feed on low- quality (low-nutrient: C) food, and have a relatively low body nutrient content themselves, such as herbivores and detritivores.  相似文献   
3.
Eutrophication is the most widespread water quality issue globally. To date, most efforts to control eutrophication have focused on reductions of external nutrient inputs, yet importance of nutrient stoichiometry and subsequent shift in plankton composition in aquatic ecosystem has been largely neglected. To address eutrophication, improved sanitation is one of the United Nations Sustainable Development Goals, spurring the constructions of wastewater treatment facilities that have improved water quality in many lakes and rivers. However, control measures are often targeted at and effective in removing a single nutrient from sewage and thus are less effective in removing the others, resulting in the changes of nutrient stoichiometry. In general, more effective phosphorus removal relative to nitrogen has occurred in wastewater treatment leading to substantial increases in N/P ratios in effluent relative to the influent. Unfortunately, high N/P ratios in receiving waters can impose negative influences on ecosystems. Thus, long-term strategies for domestic wastewater management should not merely focus on the total reduction of nutrient discharge but also consider their stoichiometric balances in receiving waters.  相似文献   
4.
Concerns about phosphorus (P) sustainability in agriculture arise not only from the potential of P scarcity but also from the known effects of agricultural P use beyond the field, i.e., eutrophication leading to dead zones in lakes, rivers and coastal oceans due to runoffs from fertilized fields. Plants possess a large number of adaptive responses to Pi (orthophosphate) limitation that provide potential raw materials to enhance Pi scavenging abilities of crop plants. Understanding and engineering these adaptive responses to increase the efficiency of crop capture of natural and fertilizer Pi in soils is one way to optimize Pi use efficiency (PUE) and, together with other approaches, help to meet the P sustainability challenge in agriculture. Research on the molecular and physiological basis of Pi uptake is facilitating the generation of plants with enhanced Pi use efficiency by genetic engineering. Here we describe work done in this direction with emphasis on the up-regulation of plant proton-translocating pyrophosphatases (H+-PPases).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号