首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
废物处理   3篇
综合类   2篇
基础理论   2篇
污染及防治   2篇
  2018年   1篇
  2014年   3篇
  2013年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
研究了废弃含溴化阻燃剂的电子塑料在超临界异丙醇中的液化特性.研究结果表明塑料在超临界异丙醇中发生了解聚,产生油、气以及固体残渣,塑料中的溴化阻燃剂发生了脱溴降解.反应时间、固/液比、溶剂填充度对塑料解聚及阻燃剂脱溴降解影响较大,在最佳工艺条件(温度:400℃,反应时间:60min,固/液比:1/10,溶剂填充度:50%)下获得60%的产油率及95.3%的脱溴率.油以苯系物及酚类物质为主要组成物质,其热值为37.5MJ/kg.超临界异丙醇处理含溴化阻燃剂塑料主要包括溴化阻燃剂的萃取、脱溴降解和塑料高温解聚等过程.  相似文献   
2.
Iron oxide-loaded slag for arsenic removal from aqueous system   总被引:5,自引:0,他引:5  
Zhang FS  Itoh H 《Chemosphere》2005,60(3):319-325
An effective adsorbent for arsenic removal from aqueous system was synthesized by loading iron(III) oxide on municipal solid waste incinerator melted slag. The loading was accomplished via chemical processes and thermal coating technique. The key point of the technique was the simultaneous generation of amorphous FeOOH sol and silica sol in-situ and eventually led to the formation of Fe-Si surface complexes which combined the iron oxide with the melted slag tightly. The surface morphology of the iron oxide-loaded slag was examined and the loading mechanisms were discussed in detail. The adsorbent was effective for both arsenate and arsenite removal and its removal capabilities for As(V) and As(III) were 2.5 and 3 times of those of FeOOH, respectively. Both affinity adsorption and chemical reactions contributed to arsenic removal. The effects of solution pH, contact time, arsenic concentration and adsorbent dosage on arsenic removal were examined and the optimum removal conditions were established. Furthermore, leaching of hazardous elements such as Cr(VI), As, Se, Cd and Pb from the adsorbent at a pH range of 2.5-12.5 was below the regulation values. Accordingly, it is believed that the iron oxide-loaded slag developed in this study is environmentally acceptable and industrially applicable for wastewater treatment.  相似文献   
3.
Brominated flame retardants contained in electrical and electronic waste plastic are toxic to both humans and the environment. Most disposal technologies for brominated flame retardants are environmentally unfriendly. Here, a novel solvothermal process was designed to recover tetrabromobisphenol A, a typical brominated flame retardant, from waste computer housing plastic. The plastic waste was treated by the solvothermal process followed by vacuum rotary evaporation. Results show a tetrabromobisphenol A recovery efficiency of 78.9 %, and a purity of 95.6 %. The stability of tetrabromobisphenol A during the solvothermal process was confirmed by nuclear magnetic resonance. Kinetics showed that diffusion across the polymer layer controlled recovery. We conclude that the novel solvothermal process is a promising green way to recover tetrabromobisphenol A from electrical and electronic waste plastic.  相似文献   
4.
针对废弃线路板机械破碎分离产物中贵金属分布特征不明确的现状,以废弃手机和电脑主板为原材料,研究了分离产物中银(Ag)、钯(Pd)的分布规律。结果表明,经机械破碎分离后,Ag在手机和电脑主板金属分离物中的分配率为98.3%、97.6%,在非金属分离物中的分布为1.68%、2.45%,Pd在2类主板的金属分离物中的分配率均为100%。不同破碎颗粒中,Ag在手机主板金属分离物小颗粒(0.12 mm<Ф<0.85 mm)与大颗粒(Ф>0.85 mm)中的分配率为71.7%、26.6%,电脑主板相应为62.7%、34.7%;Pd在手机主板金属分离物2类颗粒中为52.6%、47.5%,电脑主板相应为44.8%、55.2%。在机械破碎过程中,板卡的外层铜箔容易成为小颗粒,而内层铜箔大部分形成大颗粒。物料平衡研究显示,Ag、Pd的回收率分别为96.5%~97.1%、97.3%~98.4%。  相似文献   
5.
Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420 °C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440 °C.  相似文献   
6.
Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.  相似文献   
7.
Detoxification effect of chlorination procedure on waste lead glass   总被引:1,自引:0,他引:1  
This work reports the detoxification effect of chlorinating volatilization procedure on waste lead glass. The effects of various reaction parameters on lead removal efficiencies were examined, and the optimal operation conditions were 1000 °C, 2 h, and 600 ± 50 Pa, respectively. Moreover, it was found that the residues could be safely applied in a wide range, e.g., for wollastonite synthesis by an environmental benign technique. Accordingly, the typical hazardous waste was successfully converted into a safe raw material for further industrial application.  相似文献   
8.
Environmental Chemistry Letters - Recycling scrap printed circuit boards for recovery of valuable metal resources is a major environmental issue. Most available disposal technologies are not...  相似文献   
9.
Zhang FS  Itoh H 《Chemosphere》2006,65(1):125-131
Photocatalytic oxidation of arsenite and simultaneous removal of the generated arsenate from aqueous solution were investigated. The whole process was performed using an adsorbent developed by loading iron oxide and TiO2 on municipal solid waste melted slag. The loading was carried out through chemical reactions and high-temperature process. In the removal process, arsenite was first oxidized to arsenate, and then was removed by adsorption. The oxidation of arsenite was rapid, but the adsorption of the generated arsenate was slow. A concentration of 100 mg l(-1) arsenite could be entirely oxidized to arsenate within 3 h in the presence of the adsorbent and under UV-light irradiation, but the equilibrium adsorption of the generated arsenate needed 10 h. Arsenite could also be oxidized to arsenate only by UV-light, but the reaction rate was approximately 1/3 of that of the photocatalyzed reaction. Both acidic and alkaline conditions were favorable for the oxidation reaction, and the optimum pH value for the oxidation and adsorption was proposed to be around 3. To oxidize and remove original 20 mg l(-1) or 50 mg l(-1) arsenite from aqueous solution, the necessary adsorbent amount was 2 g l(-1) or 5 g l(-1), respectively. Furthermore, the surface properties of the adsorbent were examined and the oxidation mechanism of arsenite was discussed. It is believed that the adsorbent developed in this study is efficient, cost-effective and environment-friendly for application in arsenic-contaminated wastewater treatment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号