首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2014年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Biodiversity indices often combine data from different species when used in monitoring programs. Heuristic properties can suggest preferred indices, but we lack objective ways to discriminate between indices with similar heuristics. Biodiversity indices can be evaluated by determining how well they reflect management objectives that a monitoring program aims to support. For example, the Convention on Biological Diversity requires reporting about extinction rates, so simple indices that reflect extinction risk would be valuable. We developed 3 biodiversity indices that are based on simple models of population viability that relate extinction risk to abundance. We based the first index on the geometric mean abundance of species and the second on a more general power mean. In a third index, we integrated the geometric mean abundance and trend. These indices require the same data as previous indices, but they also relate directly to extinction risk. Field data for butterflies and woodland plants and experimental studies of protozoan communities show that the indices correlate with local extinction rates. Applying the index based on the geometric mean to global data on changes in avian abundance suggested that the average extinction probability of birds has increased approximately 1% from 1970 to 2009. Conectando Índices para el Monitoreo de la Biodiversidad con la Teoría de Riesgo de Extinción  相似文献   
2.
Effects of Road Fencing on Population Persistence   总被引:6,自引:0,他引:6  
Abstract:  Roads affect animal populations in three adverse ways. They act as barriers to movement, enhance mortality due to collisions with vehicles, and reduce the amount and quality of habitat. Putting fences along roads removes the problem of road mortality but increases the barrier effect. We studied this trade-off through a stochastic, spatially explicit, individual-based model of population dynamics. We investigated the conditions under which fences reduce the impact of roads on population persistence. Our results showed that a fence may or may not reduce the effect of the road on population persistence, depending on the degree of road avoidance by the animal and the probability that an animal that enters the road is killed by a vehicle. Our model predicted a lower value of traffic mortality below which a fence was always harmful and an upper value of traffic mortality above which a fence was always beneficial. Between these two values the suitability of fences depended on the degree of road avoidance. Fences were more likely to be beneficial the lower the degree of road avoidance and the higher the probability of an animal being killed on the road. We recommend the use of fences when traffic is so high that animals almost never succeed in their attempts to cross the road or the population of the species of concern is declining and high traffic mortality is known to contribute to the decline. We discourage the use of fences when population size is stable or increasing or if the animals need access to resources on both sides of the road, unless fences are used in combination with wildlife crossing structures. In many cases, the use of fences may be beneficial as an interim measure until more permanent measures are implemented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号