首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
基础理论   1篇
污染及防治   5篇
评价与监测   1篇
  2023年   1篇
  2022年   2篇
  2014年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Kah M  Brown CD 《Chemosphere》2008,72(10):1401-1408
The octanol/water partition coefficient (Kow) for organic compounds is widely used in predictive environmental studies. A significant proportion of contaminants of surface and ground water are ionisable (e.g. many pesticides, pharmaceuticals, metabolites). Such compounds may be partially ionised dependent on the pH. Since the neutral and ionic species exhibit different polarities, the Kow value of ionisable pesticides is pH dependent. It is therefore essential to determine Kow values over the full range of pH that occurs in the environment in order to get appropriate predictors. Numerous methods are available to measure lipophilicity but only a few are appropriate for ionisable pesticides (e.g. pH metric and filter probe methods). Parameters such as pH and ionic strength need to be carefully controlled when working with ionisable compounds. Variation of these factors probably explains why literature can yield Kow values that differ by more than one order of magnitude for some compounds. In this article, Kow values obtained for six acidic pesticides with three different methods are compared as well (data from the literature, measured by pH metric method and calculated with five computer programs). The values used in predictive regression equations needs to be either measured with a suitable method or selected from the literature with great care.  相似文献   
2.
Environmental Science and Pollution Research - Urban-dwelling birds can be useful biomonitors to assess the impact of the urbanisation on both public and wildlife health. Widely distributed urban...  相似文献   
3.
A study was carried out to investigate the fractionation of Cd, Cr, Cu, Fe, Mn, Pb, and Zn in shrimp aquaculture sludge from Selangor, Malaysia, using original (unmodified) and modified four-steps BCR (European Community Bureau of Reference, now known as the Standards Measurements and Testing Program) sequential extraction scheme. Step 2 of the unmodified BCR procedure (subsequently called Method A) involves treatment with 0.1 M hydroxylammonium chloride at pH 2, whereas 0.5 M hydroxylammonium chloride at pH 1.5 was used in the modified BCR procedure (subsequently called Method B). Metal analyses were carried out by flame atomic absorption spectrometry. A pseudo-total aqua-regia digest of BCR CRM 701 has also been undertaken for quality assurance purposes. The recovery of Method A for all metals studied ranges from 96.14% to 105.26%, while the recovery for Method B ranges from 95.94% to 122.40%. Our results reveal that Method A underestimated the proportion of metals bound to the easily reducible fraction except for copper. Therefore, the potential mobility of these elements is higher than others. Thus, to use this sludge as a fertilizer we have to first find a remediation for reduction of heavy metal contamination.  相似文献   
4.
Xu  Zhenlan  Tang  Tao  Lin  Qin  Yu  Jianzhong  Zhang  Changpeng  Zhao  Xueping  Kah  Melanie  Li  Lingxiangyu 《Environmental Chemistry Letters》2022,20(3):2097-2108
Environmental Chemistry Letters - With the escalating food demand of the ever-increasing global population and the rapid development of nanotechnology, nanopesticides are being proposed as...  相似文献   
5.
For the first time, regulatory protocols defined in the OECD guidelines were applied to determine the fate properties of a nanopesticide in two agricultural soils with contrasting characteristics. The nanoformulation studied had no effect on the degradation kinetics of atrazine indicating that (1) the release of atrazine from the polymer nanocarriers occurred rapidly relative to the degradation kinetics (half-lives 36–53 days) and/or that (2) atrazine associated with the nanocarriers was subject to biotic or abiotic degradation. Sorption coefficients, derived from a batch and a centrifugation technique at a realistic soil-to-solution ratio, were higher for the nanoformulated atrazine than for the pure active ingredient. Results indicate that the nanoformulation had an effect on the fate of atrazine. However, since the protocols applied were designed to assess solutes, conclusions about the transport of atrazine loaded onto the nanocarriers should be made extremely cautiously. The centrifugation method applied over time (here over 7 days) appears to be a useful tool to indirectly assess the durability of nanopesticides under realistic soil-to-solution ratios and estimate the period of time during which an influence on the fate of the active ingredient may be expected. More detailed investigations into the bioavailability and durability of nanopesticides are necessary and will require the development of novel methods suitable to address both the “nano” and “organic” characteristics of polymer-based nanopesticides.  相似文献   
6.
Changes in pesticide adsorption with time at high soil to solution ratios   总被引:2,自引:0,他引:2  
Kah M  Brown CD 《Chemosphere》2007,68(7):1335-1343
Adsorption of six pesticides (2,4-D, dicamba, fluroxypyr, fluazifop-P, metsulfuron-methyl and flupyrsulfuron-methyl) in nine contrasting soils was measured using two techniques: (i) a classical batch method and (ii) a centrifugation method that allowed the measurement of adsorption at a realistic soil to solution ratio after one and seven days. Although the batch method gived significantly higher values of Kd than the centrifugation method for the more strongly sorbed molecules in the more sorptive soils, it tended to give lower adsorption coefficients compared to the centrifugation method when adsorption was lower. Discrepancies between the two methods were probably mainly due to the vigorous shaking applied in the batch technique that artificially enhances the availability of adsorption sites. This implies that shortly after application, more pesticide may be present in the soil solution and thus be available for degradation, plant uptake or leaching than will be predicted from adsorption coefficient determined using the batch method. Adsorption significantly increased between one and seven days and the extractability of total residues decreased with time. The increase in adsorption was not directly related to the level of adsorption although it was more important in soils containing more organic carbon (p=0.022). These results confirm the importance of time-dependent processes and the necessity to include them in risk assessment procedures. The centrifugation technique is a useful method to measure adsorption of pesticides at realistic soil moisture contents and seems to be an adequate technique to characterise the fraction of pesticide that is available for leaching at a given time after application.  相似文献   
7.

Herein, we report a detailed study on creating heterojunction between graphitic carbon nitride (g-C3N4) and bismuth phosphate (BiPO4), enhancing the unpaired free electron mobility. This leads to an accelerated photocatalysis of 2,4-dichlorophenols (2,4-DCPs) under sunlight irradiation. The heterojunction formation was efficaciously conducted via a modest thermal deposition technique. The function of g-C3N4 plays a significant role in generating free electrons under sunlight irradiation. Together, the generated electrons at the g-C3N4 conduction band (CB) are transferred and trapped by the BiPO4 to form active superoxide anion radicals (?O2?). These active radicals will be accountable for the photodegradation of 2,4-DCPs. The synthesized composite characteristics were methodically examined through several chemical and physical studies. Due to the inimitable features of both g-C3N4 and BiPO4, its heterojunction formation, 2.5wt% BiPO4/g-C3N4 achieved complete 2,4-DCP removal (100%) in 90 min under sunlight irradiation. This is due to the presence of g-C3N4 that enhanced electron mobility through the formation of heterojunctions that lengthens the electron-hole pairs’ lifetime and maximizes the entire solar spectrum absorption to generate active electrons at the g-C3N4 conduction band. Thus, this formation significantly draws the attention for future environmental remediation, especially in enhancing the entire solar spectrum’s harvesting.

Graphical abstract
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号